The word robotics was derived from the word robot, which was introduced to the public by Czech writer Karel Čapek in his play R.U.R. (Rossum's Universal Robots), which was published in 1920.[3] The word robot comes from the Slavic word robota, which means labour. The play begins in a factory that makes artificial people called robots, creatures who can be mistaken for humans – similar to the modern ideas of androids. Karel Čapek himself did not coin the word. He wrote a short letter in reference to an etymology in the Oxford English Dictionary in which he named his brother Josef Čapek as its actual originator.[3] According to the Oxford English Dictionary, the word robotics was first used in print by Isaac Asimov, in his science fiction short story "Liar", published in May 1941 in Astounding Science Fiction. Asimov was unaware that he was coining the term; since the science and technology of electrical devices is electronics, he assumed robotics already referred to the science and technology of robots. In some of Asimov's other works, he states that the first use of the word robotics was in his short story Runaround (Astounding Science Fiction, March 1942).[4][5] However, the original publication of "Liar!" predates that of "Runaround" by ten months, so the former is generally cited as the word's origin. History of robotics In 1927 the Maschinenmensch ("machine-human") gynoid humanoid robot (also called "Parody", "Futura", "Robotrix", or the "Maria impersonator"), the first depiction of a robot ever to appear on film, was played by German actress Brigitte Helm in Fritz Lang's film Metropolis. In 1942 the science fiction writer Isaac Asimov formulated his Three Laws of Robotics. In 1948 Norbert Wiener formulated the principles of cybernetics, the basis of practical robotics. Fully autonomous robots only appeared in the second half of the 20th century. The first digitally operated and programmable robot, the Unimate, was installed in 1961 to lift hot pieces of metal from a die casting machine and stack them. Commercial and industrial robots are widespread today and used to perform jobs more cheaply, or more accurately and reliably, than humans. They are also employed in jobs which are too dirty, dangerous, or dull to be suitable for humans. Robots are widely used in manufacturing, assembly, packing and packaging, transport, earth and space exploration, surgery, weaponry, laboratory research, safety, and the mass production of consumer and industrial goods.[6] Date Significance Robot Name Inventor Third century B.C. and earlier One of the earliest descriptions of automata appears in the Lie Zi text, on a much earlier encounter between King Mu of Zhou (1023–957 BC) and a mechanical engineer known as Yan Shi, an 'artificer'. The latter allegedly presented the king with a life-size, human-shaped figure of his mechanical handiwork.[7] Yan Shi First century A.D. and earlier Descriptions of more than 100 machines and automata, including a fire engine, a wind organ, a coin-operated machine, and a steam-powered engine, in Pneumatica and Automata by Heron of Alexandria Ctesibius, Philo of Byzantium, Heron of Alexandria, and others c. 420 B.C.E A wooden, steam propelled bird, which was able to fly Archytas of Tarentum 1206 Created early humanoid automata, programmable automaton band[8] Robot band, hand-washing automaton,[9] automated moving peacocks[10] Al-Jazari 1495 Designs for a humanoid robot Mechanical knight Leonardo da Vinci 1738 Mechanical duck that was able to eat, flap its wings, and excrete Digesting Duck Jacques de Vaucanson 1898 Nikola Tesla demonstrates first radio-controlled vessel. Teleautomaton Nikola Tesla 1921 First fictional automatons called "robots" appear in the play R.U.R. Rossum's Universal Robots Karel Čapek 1930s Humanoid robot exhibited at the 1939 and 1940 World's Fairs Elektro Westinghouse Electric Corporation 1948 Simple robots exhibiting biological behaviors[11] Elsie and Elmer William Grey Walter 1956 First commercial robot, from the Unimation company founded by George Devol and Joseph Engelberger, based on Devol's patents[12] Unimate George Devol 1961 First installed industrial robot. Unimate George Devol 1973 First industrial robot with six electromechanically driven axes[13][14] Famulus KUKA Robot Group 1974 The world’s first microcomputer controlled electric industrial robot, IRB 6 from ASEA, was delivered to a small mechanical engineering company in southern Sweden. The design of this robot had been patented already 1972. IRB 6 ABB Robot Group 1975 Programmable universal manipulation arm, a Unimation product PUMA Victor Scheinman Robotic aspects Robotic Construction Electrical Aspect A level of programming There are many types of robots; they are used in many different environments and for many different uses, although being very diverse in application and form they all share three basic similarities when it comes to their construction: Robots all have some kind of mechanical construction, a frame, form or shape designed to achieve a particular task. For example, a robot designed to travel across heavy dirt or mud, might use caterpillar tracks. The mechanical aspect is mostly the creator's solution to completing the assigned task and dealing with the physics of the environment around it. Form follows function. Robots have electrical components which power and control the machinery. For example, the robot with caterpillar tracks would need some kind of power to move the tracker treads. That power comes in the form of electricity, which will have to travel through a wire and originate from a battery, a basic electrical circuit. Even gas powered machines that get their power mainly from gas still require an electrical current to start the gas using process which is why most gas powered machines like cars, have batteries. The electrical aspect of robots is used for movement (through motors), sensing (where electrical signals are used to measure things like heat, sound, position, and energy status) and operation (robots need some level of electrical energy supplied to their motors and sensors in order to activate and perform basic operations) All robots contain some level of computer programming code. A program is how a robot decides when or how to do something. In the caterpillar track example, a robot that needs to move across a muddy road may have the correct mechanical construction, and receive the correct amount of power from its battery, but would not go anywhere without a program telling it to move. Programs are the core essence of a robot, it could have excellent mechanical and electrical construction, but if its program is poorly constructed its performance will be very poor or it may not perform at all. There are three different types of robotic programs: remote control, artificial intelligence and hybrid. A robot with remote control programing has a preexisting set of commands that it will only perform if and when it receives a signal from a control source, typically a human being with a remote control. It is perhaps more appropriate to view devices controlled primarily by human commands as falling in the discipline of automation rather than robotics. Robots that use artificial intelligence interact with their environment on their own without a control source, and can determine reactions to objects and problems they encounter using their preexisting programming. Hybrid is a form of programming that incorporates both AI and RC functions. Components Power source Further information: Power supply and Energy storage At present mostly (lead-acid) batteries are used as a power source. Many different types of batteries can be used as a power source for robots. They range from lead acid batteries which are safe and have relatively long shelf lives but are rather heavy to silver cadmium batteries that are much smaller in volume and are currently much more expensive. Designing a battery powered robot needs to take into account factors such as safety, cycle lifetime and weight. Generators, often some type of internal combustion engine, can also be used. However, such designs are often mechanically complex and need fuel, require heat dissipation and are relatively heavy. A tether connecting the robot to a power supply would remove the power supply from the robot entirely. This has the advantage of saving weight and space by moving all power generation and storage components elsewhere. However, this design does come with the drawback of constantly having a cable connected to the robot, which can be difficult to manage.[15] Potential power sources could be: pneumatic (compressed gases) Solar power (using the sun's energy and converting it into electrical power) hydraulics (liquids) flywheel energy storage organic garbage (through anaerobic digestion) faeces (human, animal); may be interesting in a military context as faeces of small combat groups may be reused for the energy requirements of the robot assistant (see DEKA's project Slingshot Stirling engine on how the system would operate) Actuation Main article: Actuator A robotic leg powered by air muscles Actuators are like the "muscles" of a robot, the parts which convert stored energy into movement. By far the most popular actuators are electric motors that spin a wheel or gear, and linear actuators that control industrial robots in factories. But there are some recent advances in alternative types of actuators, powered by electricity, chemicals, or compressed air. Electric motors Main article: Electric motor The vast majority of robots use electric motors, often brushed and brushless DC motors in portable robots or AC motors in industrial robots and CNC machines. These motors are often preferred in systems with lighter loads, and where the predominant form of motion is rotational. Linear actuators Main article: Linear actuator Various types of linear actuators move in and out instead of by spinning, and often have quicker direction changes, particularly when very large forces are needed such as with industrial robotics. They are typically powered by compressed air (pneumatic actuator) or an oil (hydraulic actuator). Series elastic actuators A spring can be designed as part of the motor actuator, to allow improved force control. It has been used in various robots, particularly walking humanoid robots.[16] Air muscles Main article: Pneumatic artificial muscles Pneumatic artificial muscles, also known as air muscles, are special tubes that contract (typically up to 40%) when air is forced inside them. They have been used for some robot applications.[17][18] Muscle wire Main article: Shape memory alloy Muscle wire, also known as shape memory alloy, Nitinol® or Flexinol® wire, is a material that contracts slightly (typically under 5%) when electricity runs through it. They have been used for some small robot applications.[19][20] Electroactive polymers Main article: Electroactive polymers EAPs or EPAMs are a new plastic material that can contract substantially (up to 380% activation strain) from electricity, and have been used in facial muscles and arms of humanoid robots,[21] and to allow new robots to float,[22] fly, swim or walk.[23] Piezo motors Main article: Piezoelectric motor Recent alternatives to DC motors are piezo motors or ultrasonic motors. These work on a fundamentally different principle, whereby tiny piezoceramic elements, vibrating many thousands of times per second, cause linear or rotary motion. There are different mechanisms of operation; one type uses the vibration of the piezo elements to walk the motor in a circle or a straight line.[24] Another type uses the piezo elements to cause a nut to vibrate and drive a screw. The advantages of these motors are nanometer resolution, speed, and available force for their size.[25] These motors are already available commercially, and being used on some robots.[26][27] Elastic nanotubes Further information: Nanotube Elastic nanotubes are a promising artificial muscle technology in early-stage experimental development. The absence of defects in carbon nanotubes enables these filaments to deform elastically by several percent, with energy storage levels of perhaps 10 J/cm3 for metal nanotubes. Human biceps could be replaced with an 8 mm diameter wire of this material. Such compact "muscle" might allow future robots to outrun and outjump humans.[28] Sensing Main article: Robotic sensing Sensors allow robots to receive information about a certain measurement of the environment, or internal components. This is essential for robots to perform their tasks, and act upon any changes in the environment to calculate the appropriate response. They are used for various forms of measurements, to give the robots warnings about safety or malfunctions, and to provide real time information of the task it is performing. Touch Main article: Tactile sensor Current robotic and prosthetic hands receive far less tactile information than the human hand. Recent research has developed a tactile sensor array that mimics the mechanical properties and touch receptors of human fingertips.[29][30] The sensor array is constructed as a rigid core surrounded by conductive fluid contained by an elastomeric skin. Electrodes are mounted on the surface of the rigid core and are connected to an impedance-measuring device within the core. When the artificial skin touches an object the fluid path around the electrodes is deformed, producing impedance changes that map the forces received from the object. The researchers expect that an important function of such artificial fingertips will be adjusting robotic grip on held objects. Scientists from several European countries and Israel developed a prosthetic hand in 2009, called SmartHand, which functions like a real one—allowing patients to write with it, type on a keyboard, play piano and perform other fine movements. The prosthesis has sensors which enable the patient to sense real feeling in its fingertips.[31] Vision Main article: Computer vision Computer vision is the science and technology of machines that see. As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. The image data can take many forms, such as video sequences and views from cameras. In most practical computer vision applications, the computers are pre-programmed to solve a particular task, but methods based on learning are now becoming increasingly common. Computer vision systems rely on image sensors which detect electromagnetic radiation which is typically in the form of either visible light or infra-red light. The sensors are designed using solid-state physics. The process by which light propagates and reflects off surfaces is explained using optics. Sophisticated image sensors even require quantum mechanics to provide a complete understanding of the image formation process. Robots can also be equipped with multiple vision sensors to be better able to compute the sense of depth in the environment. Like human eyes, robots' "eyes" must also be able to focus on a particular area of interest, and also adjust to variations in light intensities. There is a subfield within computer vision where artificial systems are designed to mimic the processing and behavior of biological system, at different levels of complexity. Also, some of the learning-based methods developed within computer vision have their background in biology. Other Other common forms of sensing in robotics use lidar, radar and sonar.[citation needed] Manipulation KUKA industrial robot operating in a foundry Puma, one of the first industrial robots Baxter, a modern and versatile industrial robot developed by Rodney Brooks Further information: Mobile manipulator Robots need to manipulate objects; pick up, modify, destroy, or otherwise have an effect. Thus the "hands" of a robot are often referred to as end effectors,[32] while the "arm" is referred to as a manipulator.[33] Most robot arms have replaceable effectors, each allowing them to perform some small range of tasks. Some have a fixed manipulator which cannot be replaced, while a few have one very general purpose manipulator, for example a humanoid hand.[34] Mechanical grippers One of the most common effectors is the gripper. In its simplest manifestation it consists of just two fingers which can open and close to pick up and let go of a range of small objects. Fingers can for example be made of a chain with a metal wire run through it.[35] Hands that resemble and work more like a human hand include the Shadow Hand, the Robonaut hand,[36] ... Hands that are of a mid-level complexity include the Delft hand.[37][38] Mechanical grippers can come in various types, including friction and encompassing jaws. Friction jaws use all the force of the gripper to hold the object in place using friction. Encompassing jaws cradle the object in place, using less friction. Vacuum grippers Vacuum grippers are very simple astrictive[39] devices, but can hold very large loads provided the prehension surface is smooth enough to ensure suction. Pick and place robots for electronic components and for large objects like car windscreens, often use very simple vacuum grippers. General purpose effectors Some advanced robots are beginning to use fully humanoid hands, like the Shadow Hand, MANUS,[40] and the Schunk hand.[41] These are highly dexterous manipulators, with as many as 20 degrees of freedom and hundreds of tactile sensors.[42] Locomotion Main articles: Robot locomotion and Mobile robot Rolling robots Segway in the Robot museum in Nagoya. For simplicity most mobile robots have four wheels or a number of continuous tracks. Some researchers have tried to create more complex wheeled robots with only one or two wheels. These can have certain advantages such as greater efficiency and reduced parts, as well as allowing a robot to navigate in confined places that a four wheeled robot would not be able to. Two-wheeled balancing robots Balancing robots generally use a gyroscope to detect how much a robot is falling and then drive the wheels proportionally in the same direction, to counterbalance the fall at hundreds of times per second, based on the dynamics of an inverted pendulum.[43] Many different balancing robots have been designed.[44] While the Segway is not commonly thought of as a robot, it can be thought of as a component of a robot, when used as such Segway refer to them as RMP (Robotic Mobility Platform). An example of this use has been as NASA's Robonaut that has been mounted on a Segway.[45] Robotics is the branch of mechanical engineering, electrical engineering and computer science that deals with the design, construction, operation, and application of robots,[1] as well as computer systems for their control, sensory feedback, and information processing. These technologies deal with automated machines that can take the place of humans in dangerous environments or manufacturing processes, or resemble humans in appearance, behavior, and/or cognition. Many of today's robots are inspired by nature contributing to the field of bio-inspired robotics. The concept of creating machines that can operate autonomously dates back to classical times, but research into the functionality and potential uses of robots did not grow substantially until the 20th century.[2] Throughout history, robotics has been often seen to mimic human behavior, and often manage tasks in a similar fashion. Today, robotics is a rapidly growing field, as technological advances continue; researching, designing, and building new robots serve various practical purposes, whether domestically, commercially, or militarily. Many robots do jobs that are hazardous to people such as defusing bombs, mines and exploring shipwrecks. |
About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|
GMT+8, 2015-9-11 20:30 , Processed in 0.131281 second(s), 16 queries .