From an evolutionary-biological perspective, the function of the brain is to provide coherent control over the actions of an animal. A centralized brain allows groups of muscles to be co-activated in complex patterns; it also allows stimuli impinging on one part of the body to evoke responses in other parts, and it can prevent different parts of the body from acting at cross-purposes to each other.[78] To generate purposeful and unified action, the brain first brings information from sense organs together at a central location. It then processes this raw data to extract information about the structure of the environment. Next it combines the processed sensory information with information about the current needs of an animal and with memory of past circumstances. Finally, on the basis of the results, it generates motor response patterns that are suited to maximize the welfare of the animal. These signal-processing tasks require intricate interplay between a variety of functional subsystems.[78] Information processing The invention of electronic computers in the 1940s, along with the development of mathematical information theory, led to a realization that brains can potentially be understood as information processing systems. This concept formed the basis of the field of cybernetics, and eventually gave rise to the field now known as computational neuroscience.[79] The earliest attempts at cybernetics were somewhat crude in that they treated the brain as essentially a digital computer in disguise, as for example in John von Neumann's 1958 book, The Computer and the Brain.[80] Over the years, though, accumulating information about the electrical responses of brain cells recorded from behaving animals has steadily moved theoretical concepts in the direction of increasing realism.[79] Model of a neural circuit in the cerebellum, as proposed by James S. Albus The essence of the information processing approach is to try to understand brain function in terms of information flow and implementation of algorithms.[79] One of the most influential early contributions was a 1959 paper titled What the frog's eye tells the frog's brain: the paper examined the visual responses of neurons in the retina and optic tectum of frogs, and came to the conclusion that some neurons in the tectum of the frog are wired to combine elementary responses in a way that makes them function as "bug perceivers".[81] A few years later David Hubel and Torsten Wiesel discovered cells in the primary visual cortex of monkeys that become active when sharp edges move across specific points in the field of view—a discovery for which they won a Nobel Prize.[82] Follow-up studies in higher-order visual areas found cells that detect binocular disparity, color, movement, and aspects of shape, with areas located at increasing distances from the primary visual cortex showing increasingly complex responses.[83] Other investigations of brain areas unrelated to vision have revealed cells with a wide variety of response correlates, some related to memory, some to abstract types of cognition such as space.[84] Theorists have worked to understand these response patterns by constructing mathematical models of neurons and neural networks, which can be simulated using computers.[79] Some useful models are abstract, focusing on the conceptual structure of neural algorithms rather than the details of how they are implemented in the brain; other models attempt to incorporate data about the biophysical properties of real neurons.[85] No model on any level is yet considered to be a fully valid description of brain function, though. The essential difficulty is that sophisticated computation by neural networks requires distributed processing in which hundreds or thousands of neurons work cooperatively—current methods of brain activity recording are only capable of isolating action potentials from a few dozen neurons at a time.[86] Furthermore, even single neurons appear to be complex and capable of performing computations.[87] So, brain models that don't reflect this are arguably too abstractive to be representative of brain operation; models that do try to capture this are very computationally expensive and arguably intractable with present computational resources. However, having said this, the Human Brain Project is trying to build a realistic, detailed computational model of the entire human brain. It remains to be seen what level of success they can achieve in the time frame of the project and the wisdom of it has been publically contested, with high-profile scientists on both sides of the argument. Perception Drawing showing the ear, inner ear, and brain areas involved in hearing. A series of light blue arrows shows the flow of signals through the system. Diagram of signal processing in the auditory system One of the primary functions of a brain is to extract biologically relevant information from sensory inputs. The human brain is provided with information about light, sound, the chemical composition of the atmosphere, temperature, head orientation, limb position, the chemical composition of the bloodstream, and more. In other animals additional senses may be present, such as the infrared heat-sense of snakes, the magnetic field sense of some birds, or the electric field sense of some types of fish. Moreover, other animals may develop existing sensory systems in new ways, such as the adaptation by bats of the auditory sense into a form of sonar. One way or another, all of these sensory modalities are initially detected by specialized sensors that project signals into the brain.[8] Each sensory system begins with specialized receptor cells, such as light-receptive neurons in the retina of the eye, vibration-sensitive neurons in the cochlea of the ear, or pressure-sensitive neurons in the skin. The axons of sensory receptor cells travel into the spinal cord or brain, where they transmit their signals to a first-order sensory nucleus dedicated to one specific sensory modality. This primary sensory nucleus sends information to higher-order sensory areas that are dedicated to the same modality. Eventually, via a way-station in the thalamus, the signals are sent to the cerebral cortex, where they are processed to extract biologically relevant features, and integrated with signals coming from other sensory systems.[8] Motor control Motor systems are areas of the brain that are directly or indirectly involved in producing body movements, that is, in activating muscles. Except for the muscles that control the eye, which are driven by nuclei in the midbrain, all the voluntary muscles in the body are directly innervated by motor neurons in the spinal cord and hindbrain.[8] Spinal motor neurons are controlled both by neural circuits intrinsic to the spinal cord, and by inputs that descend from the brain. The intrinsic spinal circuits implement many reflex responses, and contain pattern generators for rhythmic movements such as walking or swimming. The descending connections from the brain allow for more sophisticated control.[8] The brain contains several motor areas that project directly to the spinal cord. At the lowest level are motor areas in the medulla and pons, which control stereotyped movements such as walking, breathing, or swallowing. At a higher level are areas in the midbrain, such as the red nucleus, which is responsible for coordinating movements of the arms and legs. At a higher level yet is the primary motor cortex, a strip of tissue located at the posterior edge of the frontal lobe. The primary motor cortex sends projections to the subcortical motor areas, but also sends a massive projection directly to the spinal cord, through the pyramidal tract. This direct corticospinal projection allows for precise voluntary control of the fine details of movements. Other motor-related brain areas exert secondary effects by projecting to the primary motor areas. Among the most important secondary areas are the premotor cortex, basal ganglia, and cerebellum.[8] Major areas involved in controlling movement Area Location Function Ventral horn Spinal cord Contains motor neurons that directly activate muscles[88] Oculomotor nuclei Midbrain Contains motor neurons that directly activate the eye muscles[89] Cerebellum Hindbrain Calibrates precision and timing of movements[8] Basal ganglia Forebrain Action selection on the basis of motivation[90] Motor cortex Frontal lobe Direct cortical activation of spinal motor circuits Premotor cortex Frontal lobe Groups elementary movements into coordinated patterns[8] Supplementary motor area Frontal lobe Sequences movements into temporal patterns[91] Prefrontal cortex Frontal lobe Planning and other executive functions[92] In addition to all of the above, the brain and spinal cord contain extensive circuitry to control the autonomic nervous system, which works by secreting hormones and by modulating the "smooth" muscles of the gut.[8] The autonomic nervous system affects heart rate, digestion, respiration rate, salivation, perspiration, urination, and sexual arousal, and several other processes. Most of its functions are not under direct voluntary control. Arousal See also: Sleep Perhaps the most obvious aspect of the behavior of any animal is the daily cycle between sleeping and waking. Arousal and alertness are also modulated on a finer time scale, though, by an extensive network of brain areas.[8] A key component of the arousal system is the suprachiasmatic nucleus (SCN), a tiny part of the hypothalamus located directly above the point at which the optic nerves from the two eyes cross. The SCN contains the body's central biological clock. Neurons there show activity levels that rise and fall with a period of about 24 hours, circadian rhythms: these activity fluctuations are driven by rhythmic changes in expression of a set of "clock genes". The SCN continues to keep time even if it is excised from the brain and placed in a dish of warm nutrient solution, but it ordinarily receives input from the optic nerves, through the retinohypothalamic tract (RHT), that allows daily light-dark cycles to calibrate the clock.[93] The SCN projects to a set of areas in the hypothalamus, brainstem, and midbrain that are involved in implementing sleep-wake cycles. An important component of the system is the reticular formation, a group of neuron-clusters scattered diffusely through the core of the lower brain. Reticular neurons send signals to the thalamus, which in turn sends activity-level-controlling signals to every part of the cortex. Damage to the reticular formation can produce a permanent state of coma.[8] Sleep involves great changes in brain activity.[8] Until the 1950s it was generally believed that the brain essentially shuts off during sleep,[94] but this is now known to be far from true; activity continues, but patterns become very different. There are two types of sleep: REM sleep (with dreaming) and NREM (non-REM, usually without dreaming) sleep, which repeat in slightly varying patterns throughout a sleep episode. Three broad types of distinct brain activity patterns can be measured: REM, light NREM and deep NREM. During deep NREM sleep, also called slow wave sleep, activity in the cortex takes the form of large synchronized waves, whereas in the waking state it is noisy and desynchronized. Levels of the neurotransmitters norepinephrine and serotonin drop during slow wave sleep, and fall almost to zero during REM sleep; levels of acetylcholine show the reverse pattern.[8] Homeostasis Cross-section of a human head, showing location of the hypothalamus For any animal, survival requires maintaining a variety of parameters of bodily state within a limited range of variation: these include temperature, water content, salt concentration in the bloodstream, blood glucose levels, blood oxygen level, and others.[95] The ability of an animal to regulate the internal environment of its body—the milieu intérieur, as pioneering physiologist Claude Bernard called it—is known as homeostasis (Greek for "standing still").[96] Maintaining homeostasis is a crucial function of the brain. The basic principle that underlies homeostasis is negative feedback: any time a parameter diverges from its set-point, sensors generate an error signal that evokes a response that causes the parameter to shift back toward its optimum value.[95] (This principle is widely used in engineering, for example in the control of temperature using a thermostat.) In vertebrates, the part of the brain that plays the greatest role is the hypothalamus, a small region at the base of the forebrain whose size does not reflect its complexity or the importance of its function.[95] The hypothalamus is a collection of small nuclei, most of which are involved in basic biological functions. Some of these functions relate to arousal or to social interactions such as sexuality, aggression, or maternal behaviors; but many of them relate to homeostasis. Several hypothalamic nuclei receive input from sensors located in the lining of blood vessels, conveying information about temperature, sodium level, glucose level, blood oxygen level, and other parameters. These hypothalamic nuclei send output signals to motor areas that can generate actions to rectify deficiencies. Some of the outputs also go to the pituitary gland, a tiny gland attached to the brain directly underneath the hypothalamus. The pituitary gland secretes hormones into the bloodstream, where they circulate throughout the body and induce changes in cellular activity.[97] Motivation Components of the basal ganglia, shown in two cross-sections of the human brain. Blue: caudate nucleus and putamen. Green: globus pallidus. Red: subthalamic nucleus. Black: substantia nigra. According to evolutionary theory, individuals are genetically programmed to behave in ways that ensure survival and reproductive success. This overarching goal of genetic fitness translates into a set of specific survival-promoting behaviors, such as seeking food, water, shelter, and a mate.[98] The motivational system in the brain monitors the current state of satisfaction of these goals, and activates behaviors to meet any needs that arise. The motivational system works largely by a reward–punishment mechanism. When a particular behavior is followed by favorable consequences, the reward mechanism in the brain is activated, which induces structural changes inside the brain that cause the same behavior to be repeated later, whenever a similar situation arises. Conversely, when a behavior is followed by unfavorable consequences, the brain's punishment mechanism is activated, inducing structural changes that cause the behavior to be suppressed when similar situations arise in the future.[99] Most organisms studied to date utilize a reward–punishment mechanism: for instance, worms and insects can alter their behavior to seek food sources or to avoid dangers.[100] In vertebrates, the reward-punishment system is implemented by a specific set of brain structures, at the heart of which lie the basal ganglia, a set of interconnected areas at the base of the forebrain.[47] There is substantial evidence that the basal ganglia are the central site at which decisions are made: the basal ganglia exert a sustained inhibitory control over most of the motor systems in the brain; when this inhibition is released, a motor system is permitted to execute the action it is programmed to carry out. Rewards and punishments function by altering the relationship between the inputs that the basal ganglia receive and the decision-signals that are emitted. The reward mechanism is better understood than the punishment mechanism, because its role in drug abuse has caused it to be studied very intensively. Research has shown that the neurotransmitter dopamine plays a central role: addictive drugs such as cocaine, amphetamine, and nicotine either cause dopamine levels to rise or cause the effects of dopamine inside the brain to be enhanced.[101] Learning and memory Almost all animals are capable of modifying their behavior as a result of experience—even the most primitive types of worms. Because behavior is driven by brain activity, changes in behavior must somehow correspond to changes inside the brain. Theorists dating back to Santiago Ramón y Cajal argued that the most plausible explanation is that learning and memory are expressed as changes in the synaptic connections between neurons.[102] Until 1970, however, experimental evidence to support the synaptic plasticity hypothesis was lacking. In 1971 Tim Bliss and Terje Lømo published a paper on a phenomenon now called long-term potentiation: the paper showed clear evidence of activity-induced synaptic changes that lasted for at least several days.[103] Since then technical advances have made these sorts of experiments much easier to carry out, and thousands of studies have been made that have clarified the mechanism of synaptic change, and uncovered other types of activity-driven synaptic change in a variety of brain areas, including the cerebral cortex, hippocampus, basal ganglia, and cerebellum.[104] BDNF and physical activity appear to play a beneficial role in the process.[105] Neuroscientists currently distinguish several types of learning and memory that are implemented by the brain in distinct ways: Working memory is the ability of the brain to maintain a temporary representation of information about the task that an animal is currently engaged in. This sort of dynamic memory is thought to be mediated by the formation of cell assemblies—groups of activated neurons that maintain their activity by constantly stimulating one another.[106] Episodic memory is the ability to remember the details of specific events. This sort of memory can last for a lifetime. Much evidence implicates the hippocampus in playing a crucial role: people with severe damage to the hippocampus sometimes show amnesia, that is, inability to form new long-lasting episodic memories.[107] Semantic memory is the ability to learn facts and relationships. This sort of memory is probably stored largely in the cerebral cortex, mediated by changes in connections between cells that represent specific types of information.[108] Instrumental learning is the ability for rewards and punishments to modify behavior. It is implemented by a network of brain areas centered on the basal ganglia.[109] Motor learning is the ability to refine patterns of body movement by practicing, or more generally by repetition. A number of brain areas are involved, including the premotor cortex, basal ganglia, and especially the cerebellum, which functions as a large memory bank for microadjustments of the parameters of movement.[110] Development Main article: Neural development Very simple drawing of the front end of a human embryo, showing each vesicle of the developing brain in a different color. Brain of a human embryo in the sixth week of development The brain does not simply grow, but rather develops in an intricately orchestrated sequence of stages.[111] It changes in shape from a simple swelling at the front of the nerve cord in the earliest embryonic stages, to a complex array of areas and connections. Neurons are created in special zones that contain stem cells, and then migrate through the tissue to reach their ultimate locations. Once neurons have positioned themselves, their axons sprout and navigate through the brain, branching and extending as they go, until the tips reach their targets and form synaptic connections. In a number of parts of the nervous system, neurons and synapses are produced in excessive numbers during the early stages, and then the unneeded ones are pruned away.[111] For vertebrates, the early stages of neural development are similar across all species.[111] As the embryo transforms from a round blob of cells into a wormlike structure, a narrow strip of ectoderm running along the midline of the back is induced to become the neural plate, the precursor of the nervous system. The neural plate folds inward to form the neural groove, and then the lips that line the groove merge to enclose the neural tube, a hollow cord of cells with a fluid-filled ventricle at the center. At the front end, the ventricles and cord swell to form three vesicles that are the precursors of the forebrain, midbrain, and hindbrain. At the next stage, the forebrain splits into two vesicles called the telencephalon (which will contain the cerebral cortex, basal ganglia, and related structures) and the diencephalon (which will contain the thalamus and hypothalamus). At about the same time, the hindbrain splits into the metencephalon (which will contain the cerebellum and pons) and the myelencephalon (which will contain the medulla oblongata). Each of these areas contains proliferative zones where neurons and glial cells are generated; the resulting cells then migrate, sometimes for long distances, to their final positions.[111] Once a neuron is in place, it extends dendrites and an axon into the area around it. Axons, because they commonly extend a great distance from the cell body and need to reach specific targets, grow in a particularly complex way. The tip of a growing axon consists of a blob of protoplasm called a growth cone, studded with chemical receptors. These receptors sense the local environment, causing the growth cone to be attracted or repelled by various cellular elements, and thus to be pulled in a particular direction at each point along its path. The result of this pathfinding process is that the growth cone navigates through the brain until it reaches its destination area, where other chemical cues cause it to begin generating synapses. Considering the entire brain, thousands of genes create products that influence axonal pathfinding.[111] The synaptic network that finally emerges is only partly determined by genes, though. In many parts of the brain, axons initially "overgrow", and then are "pruned" by mechanisms that depend on neural activity.[111] In the projection from the eye to the midbrain, for example, the structure in the adult contains a very precise mapping, connecting each point on the surface of the retina to a corresponding point in a midbrain layer. In the first stages of development, each axon from the retina is guided to the right general vicinity in the midbrain by chemical cues, but then branches very profusely and makes initial contact with a wide swath of midbrain neurons. The retina, before birth, contains special mechanisms that cause it to generate waves of activity that originate spontaneously at a random point and then propagate slowly across the retinal layer. These waves are useful because they cause neighboring neurons to be active at the same time; that is, they produce a neural activity pattern that contains information about the spatial arrangement of the neurons. This information is exploited in the midbrain by a mechanism that causes synapses to weaken, and eventually vanish, if activity in an axon is not followed by activity of the target cell. The result of this sophisticated process is a gradual tuning and tightening of the map, leaving it finally in its precise adult form.[112] Similar things happen in other brain areas: an initial synaptic matrix is generated as a result of genetically determined chemical guidance, but then gradually refined by activity-dependent mechanisms, partly driven by internal dynamics, partly by external sensory inputs. In some cases, as with the retina-midbrain system, activity patterns depend on mechanisms that operate only in the developing brain, and apparently exist solely to guide development.[112] In humans and many other mammals, new neurons are created mainly before birth, and the infant brain contains substantially more neurons than the adult brain.[111] There are, however, a few areas where new neurons continue to be generated throughout life. The two areas for which adult neurogenesis is well established are the olfactory bulb, which is involved in the sense of smell, and the dentate gyrus of the hippocampus, where there is evidence that the new neurons play a role in storing newly acquired memories. With these exceptions, however, the set of neurons that is present in early childhood is the set that is present for life. Glial cells are different: as with most types of cells in the body, they are generated throughout the lifespan.[113] There has long been debate about whether the qualities of mind, personality, and intelligence can be attributed to heredity or to upbringing—this is the nature and nurture controversy.[114] Although many details remain to be settled, neuroscience research has clearly shown that both factors are important. Genes determine the general form of the brain, and genes determine how the brain reacts to experience. Experience, however, is required to refine the matrix of synaptic connections, which in its developed form contains far more information than the genome does. In some respects, all that matters is the presence or absence of experience during critical periods of development.[115] In other respects, the quantity and quality of experience are important; for example, there is substantial evidence that animals raised in enriched environments have thicker cerebral cortices, indicating a higher density of synaptic connections, than animals whose levels of stimulation are restricted.[116] Research Main article: Neuroscience Photo of the head of a young man, with what looks like a while shower cap on his head, with a number of dark blobs scattered around it with wires attached to them. Human subject with EEG recording electrodes arranged around his head The Human Brain Project is a large scientific research project, starting in 2013, which aims to simulate the complete human brain. The field of neuroscience encompasses all approaches that seek to understand the brain and the rest of the nervous system.[8] Psychology seeks to understand mind and behavior, and neurology is the medical discipline that diagnoses and treats diseases of the nervous system. The brain is also the most important organ studied in psychiatry, the branch of medicine that works to study, prevent, and treat mental disorders.[117] Cognitive science seeks to unify neuroscience and psychology with other fields that concern themselves with the brain, such as computer science (artificial intelligence and similar fields) and philosophy.[118] The oldest method of studying the brain is anatomical, and until the middle of the 20th century, much of the progress in neuroscience came from the development of better cell stains and better microscopes. Neuroanatomists study the large-scale structure of the brain as well as the microscopic structure of neurons and their components, especially synapses. Among other tools, they employ a plethora of stains that reveal neural structure, chemistry, and connectivity. In recent years, the development of immunostaining techniques has allowed investigation of neurons that express specific sets of genes. Also, functional neuroanatomy uses medical imaging techniques to correlate variations in human brain structure with differences in cognition or behavior.[119] Neurophysiologists study the chemical, pharmacological, and electrical properties of the brain: their primary tools are drugs and recording devices. Thousands of experimentally developed drugs affect the nervous system, some in highly specific ways. Recordings of brain activity can be made using electrodes, either glued to the scalp as in EEG studies, or implanted inside the brains of animals for extracellular recordings, which can detect action potentials generated by individual neurons.[120] Because the brain does not contain pain receptors, it is possible using these techniques to record brain activity from animals that are awake and behaving without causing distress. The same techniques have occasionally been used to study brain activity in human patients suffering from intractable epilepsy, in cases where there was a medical necessity to implant electrodes to localize the brain area responsible for epileptic seizures.[121] Functional imaging techniques such as functional magnetic resonance imaging are also used to study brain activity; these techniques have mainly been used with human subjects, because they require a conscious subject to remain motionless for long periods of time, but they have the great advantage of being noninvasive.[122] Drawing showing a monkey in a restraint chair, a computer monitor, a rototic arm, and three pieces of computer equipment, with arrows between them to show the flow of information. Design of an experiment in which brain activity from a monkey was used to control a robotic arm[123] Another approach to brain function is to examine the consequences of damage to specific brain areas. Even though it is protected by the skull and meninges, surrounded by cerebrospinal fluid, and isolated from the bloodstream by the blood–brain barrier, the delicate nature of the brain makes it vulnerable to numerous diseases and several types of damage. In humans, the effects of strokes and other types of brain damage have been a key source of information about brain function. Because there is no ability to experimentally control the nature of the damage, however, this information is often difficult to interpret. In animal studies, most commonly involving rats, it is possible to use electrodes or locally injected chemicals to produce precise patterns of damage and then examine the consequences for behavior.[124] Computational neuroscience encompasses two approaches: first, the use of computers to study the brain; second, the study of how brains perform computation. On one hand, it is possible to write a computer program to simulate the operation of a group of neurons by making use of systems of equations that describe their electrochemical activity; such simulations are known as biologically realistic neural networks. On the other hand, it is possible to study algorithms for neural computation by simulating, or mathematically analyzing, the operations of simplified "units" that have some of the properties of neurons but abstract out much of their biological complexity. The computational functions of the brain are studied both by computer scientists and neuroscientists.[125] Recent years have seen increasing applications of genetic and genomic techniques to the study of the brain [126] and a focus on the roles of neurotrophic factors and physical activity in neuroplasticity.[105] The most common subjects are mice, because of the availability of technical tools. It is now possible with relative ease to "knock out" or mutate a wide variety of genes, and then examine the effects on brain function. More sophisticated approaches are also being used: for example, using Cre-Lox recombination it is possible to activate or deactivate genes in specific parts of the brain, at specific times.[126] History Illustration by René Descartes of how the brain implements a reflex response See also: History of neuroscience Early philosophers were divided as to whether the seat of the soul lies in the brain or heart. Aristotle favored the heart, and thought that the function of the brain was merely to cool the blood. Democritus, the inventor of the atomic theory of matter, argued for a three-part soul, with intellect in the head, emotion in the heart, and lust near the liver.[127] Hippocrates, the "father of medicine", came down unequivocally in favor of the brain. In his treatise on epilepsy he wrote: Men ought to know that from nothing else but the brain come joys, delights, laughter and sports, and sorrows, griefs, despondency, and lamentations. ... And by the same organ we become mad and delirious, and fears and terrors assail us, some by night, and some by day, and dreams and untimely wanderings, and cares that are not suitable, and ignorance of present circumstances, desuetude, and unskillfulness. All these things we endure from the brain, when it is not healthy... Hippocrates, On the Sacred Disease[2] Andreas Vesalius' Fabrica, published in 1543, showing the base of the human brain, including optic chiasma, cerebellum, olfactory bulbs, etc. The Roman physician Galen also argued for the importance of the brain, and theorized in some depth about how it might work. Galen traced out the anatomical relationships among brain, nerves, and muscles, demonstrating that all muscles in the body are connected to the brain through a branching network of nerves. He postulated that nerves activate muscles mechanically by carrying a mysterious substance he called pneumata psychikon, usually translated as "animal spirits".[127] Galen's ideas were widely known during the Middle Ages, but not much further progress came until the Renaissance, when detailed anatomical study resumed, combined with the theoretical speculations of René Descartes and those who followed him. Descartes, like Galen, thought of the nervous system in hydraulic terms. He believed that the highest cognitive functions are carried out by a non-physical res cogitans, but that the majority of behaviors of humans, and all behaviors of animals, could be explained mechanistically.[128] The first real progress toward a modern understanding of nervous function, though, came from the investigations of Luigi Galvani, who discovered that a shock of static electricity applied to an exposed nerve of a dead frog could cause its leg to contract. Since that time, each major advance in understanding has followed more or less directly from the development of a new technique of investigation. Until the early years of the 20th century, the most important advances were derived from new methods for staining cells.[129] Particularly critical was the invention of the Golgi stain, which (when correctly used) stains only a small fraction of neurons, but stains them in their entirety, including cell body, dendrites, and axon. Without such a stain, brain tissue under a microscope appears as an impenetrable tangle of protoplasmic fibers, in which it is impossible to determine any structure. In the hands of Camillo Golgi, and especially of the Spanish neuroanatomist Santiago Ramón y Cajal, the new stain revealed hundreds of distinct types of neurons, each with its own unique dendritic structure and pattern of connectivity.[130] A drawing on yellowing paper with an archiving stamp in the corner. A spidery tree branch structure connects to the top of a mass. A few narrow processes follow away from the bottom of the mass. Drawing by Santiago Ramón y Cajal of two types of Golgi-stained neurons from the cerebellum of a pigeon In the first half of the 20th century, advances in electronics enabled investigation of the electrical properties of nerve cells, culminating in work by Alan Hodgkin, Andrew Huxley, and others on the biophysics of the action potential, and the work of Bernard Katz and others on the electrochemistry of the synapse.[131] These studies complemented the anatomical picture with a conception of the brain as a dynamic entity. Reflecting the new understanding, in 1942 Charles Sherrington visualized the workings of the brain waking from sleep: The great topmost sheet of the mass, that where hardly a light had twinkled or moved, becomes now a sparkling field of rhythmic flashing points with trains of traveling sparks hurrying hither and thither. The brain is waking and with it the mind is returning. It is as if the Milky Way entered upon some cosmic dance. Swiftly the head mass becomes an enchanted loom where millions of flashing shuttles weave a dissolving pattern, always a meaningful pattern though never an abiding one; a shifting harmony of subpatterns. —Sherrington, 1942, Man on his Nature[132] In the second half of the 20th century, developments in chemistry, electron microscopy, genetics, computer science, functional brain imaging, and other fields progressively opened new windows into brain structure and function. In the United States, the 1990s were officially designated as the "Decade of the Brain" to commemorate advances made in brain research, and to promote funding for such research.[133] In the 21st century, these trends have continued, and several new approaches have come into prominence, including multielectrode recording, which allows the activity of many brain cells to be recorded all at the same time;[134] genetic engineering, which allows molecular components of the brain to be altered experimentally;[126] genomics, which allows variations in brain structure to be correlated with variations in DNA properties[135] and neuroimaging. |
About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|
GMT+8, 2015-9-11 20:32 , Processed in 0.134978 second(s), 16 queries .