搜索
热搜: music
门户 Wiki Wiki Nature view content

Mediterranean Sea Geology

2014-12-21 08:21| view publisher: amanda| views: 1003| wiki(57883.com) 0 : 0

description: The geologic history of the Mediterranean is complex. It was involved in the tectonic break-up and then collision of the African and Eurasian plates. The Messinian salinity crisis occurred in the late ...
The geologic history of the Mediterranean is complex. It was involved in the tectonic break-up and then collision of the African and Eurasian plates. The Messinian salinity crisis occurred in the late Miocene (12 million years ago to 5 million years ago) when the Mediterranean dried up. Geologically the Mediterranean is underlain by oceanic crust. There are more than a million cubic kilometres of salt deposits at the bottom of the Mediterranean,[38] up to three kilometres thick in places.[39]
The Mediterranean Sea has an average depth of 1,500 m (4,900 ft) and the deepest recorded point is 5,267 m (17,280 ft) in the Calypso Deep in the Ionian Sea. The coastline extends for 46,000 km (29,000 mi). A shallow submarine ridge (the Strait of Sicily) between the island of Sicily and the coast of Tunisia divides the sea in two main subregions (which in turn are divided into subdivisions), the Western Mediterranean and the Eastern Mediterranean. The Western Mediterranean covers an area of about 0.85 million km² (0.33 million mi²) and the Eastern Mediterranean about 1.65 million km² (0.64 million mi²). A characteristic of the Mediterranean Sea are submarine karst springs or vruljas, which mainly occur in shallow waters[40] and may also be thermal.[41]
Tectonic evolution
The geodynamic evolution of the Mediterranean Sea was provided by the convergence of European and African plates and several smaller microplates. This process was driven by the differential seafloor spreading along the Mid-Atlantic Ridge, which led to the closure of the Tethys Ocean and eventually to the Alpine orogenesis. However, the Mediterranean also hosts wide extensional basins and migrating tectonic arcs, in response to its land-locked configuration.
According to a report published by Nature in 2009, some scientists think that the Mediterranean Sea was mostly filled during a time period of less than two years, in a major flood (the Zanclean flood) that happened approximately 5.33 million years ago, in which water poured in from the Atlantic Ocean and through the Strait of Gibraltar, at a rate three orders of magnitude larger than the current flow of the Amazon River.[42] However, the sea basins had been filled for many millions of years before the prior closure of the Strait of Gibraltar.
Eastern Mediterranean
In middle Miocene times, the collision between the Arabian microplate and Eurasia led to the separation between the Tethys and the Indian oceans. This process resulted in profound changes in the oceanic circulation patterns, which shifted global climates towards colder conditions. The Hellenic arc, which has a land-locked configuration, underwent a widespread extension for the last 20 Ma due to a slab roll-back process. In addition, the Hellenic Arc experienced a rapid rotation phase during the Pleistocene, with a counterclockwise component in its eastern portion and a clockwise trend in the western segment.
Central Mediterranean
The opening of small oceanic basins of the central Mediterranean follows a trench migration and back-arc opening process that occurred during the last 30 Myr. This phase was characterised by the anticlockwise rotation of the Corsica–Sardinia block, which lasted until the Langhian (ca.16 Ma), and was in turn followed by a slab detachment along the northern African margin. Subsequently, a shift of this active extensional deformation led to the opening of the Tyrrenian basin.
Western Mediterranean
The Betic-Rif mountain belts developed during Mesozoic and Cenozoic times, as Africa and Iberia converged. Tectonic models for its evolution include: rapid motion of Alboran Domain, subduction zone and radial extensional collapse caused by convective removal of lithospheric mantle. The development of these intramontane Betic and Rif basins led to the onset of two marine gateways which were progressively closed during the late Miocene by an interplay of tectonic and glacio-eustatic processes.
Paleoenvironmental analysis
Its semi-enclosed configuration makes the oceanic gateways critical in controlling circulation and environmental evolution in the Mediterranean Sea. Water circulation patterns are driven by a number of interactive factors, such as climate and bathymetry, which can lead to precipitation of evaporites. During late Miocene times, a so-called "Messinian salinity crisis" (MSC hereafter) occurred, where the Mediterranean entirely or almost entirely dried out, which was triggered by the closure of the Atlantic gateway. Evaporites accumulated in the Red Sea Basin (late Miocene), in the Carpatian foredeep (middle Miocene) and in the whole Mediterranean area (Messinian). An accurate age estimate of the MSC—5.96 Ma—has recently been astronomically achieved; furthermore, this event seems to have occurred synchronously. The beginning of the MSC is supposed to have been of tectonic origin; however, an astronomical control (eccentricity) might also have been involved. In the Mediterranean basin, diatomites are regularly found underneath the evaporite deposits, thus suggesting (albeit not clearly so far) a connection between their geneses.
The present-day Atlantic gateway, i.e. the Strait of Gibraltar, finds its origin in the early Pliocene. However, two other connections between the Atlantic Ocean and the Mediterranean Sea existed in the past: the Betic corridor (southern Spain) and the Rifian Corridor (northern Morocco). The former closed during Tortonian times, thus providing a "Tortonian salinity crisis" well before the MSC; the latter closed about 6 Ma, allowing exchanges in the mammal fauna between Africa and Europe. Nowadays, evaporation is more relevant than the water yield supplied by riverine water and precipitation, so that salinity in the Mediterranean is higher than in the Atlantic. These conditions result in the outflow of warm saline Mediterranean deep water across Gibraltar, which is in turn counterbalanced by an inflow of a less saline surface current of cold oceanic water.
The Mediterranean was once thought to be the remnant of the Tethys Ocean. It is now known to be a structurally younger ocean basin known as Neotethys. The Neotethys formed during the Late Triassic and Early Jurassic rifting of the African and Eurasian plates.
Paleoclimate
Because of its latitudinal position and its land-locked configuration, the Mediterranean is especially sensitive to astronomically induced climatic variations, which are well documented in its sedimentary record. Since the Mediterranean is involved in the deposition of eolian dust from the Sahara during dry periods, whereas riverine detrital input prevails during wet ones, the Mediterranean marine sapropel-bearing sequences provide high-resolution climatic information. These data have been employed in reconstructing astronomically calibrated time scales for the last 9 Ma of the Earth's history, helping to constrain the time of past Geomagnetic Reversals.[43] Furthermore, the exceptional accuracy of these paleoclimatic records have improved our knowledge of the Earth's orbital variations in the past.
Ecology and biota
As a result of the drying of the sea during the Messinian salinity crisis,[44] the marine biota of the Mediterranean are derived primarily from the Atlantic Ocean. The North Atlantic is considerably colder and more nutrient-rich than the Mediterranean, and the marine life of the Mediterranean has had to adapt to its differing conditions in the five million years since the basin was reflooded.
The Alboran Sea is a transition zone between the two seas, containing a mix of Mediterranean and Atlantic species. The Alboran Sea has the largest population of Bottlenose Dolphins in the western Mediterranean, is home to the last population of harbour porpoises in the Mediterranean, and is the most important feeding grounds for Loggerhead Sea Turtles in Europe. The Alboran sea also hosts important commercial fisheries, including sardines and swordfish. The Mediterranean monk seals live in the Aegean Sea in Greece. In 2003, the World Wildlife Fund raised concerns about the widespread drift net fishing endangering populations of dolphins, turtles, and other marine animals.
See also: Specially Protected Areas of Mediterranean Importance
Environmental history
Unbalanced scales.svg
The neutrality of this section is disputed. Relevant discussion may be found on the talk page. Please do not remove this message until the dispute is resolved. (October 2014)
Parts of this section have been copied from Alfred Thomas Grove#Environmental skepticism.
For 4,000 years, human activity has transformed most parts of Mediterranean Europe, and the "humanisation of the landscape" overlapped with the appearance of the present Mediterranean climate.[45] The image of a simplistic, environmental determinist notion of a Mediterranean Paradise on Earth in antiquity, which was destroyed by later civilisations dates back to at least the eighteenth century and was for centuries fashionable in archaeological and historical circles. Based on a broad variety of methods, e.g. historical documents, analysis of trade relations, floodplain sediments, pollen, tree-ring and further archaeometric analyses and population studies, Alfred Thomas Grove and Oliver Rackham's work on "The Nature of Mediterranean Europe" challenges this common wisdom of a Mediterranean Europe as a "Lost Eden", a formerly fertile and forested region, that had been progressively degraded and desertified by human mismanagement.[45] The belief stems more from the failure of the recent landscape to measure up to the imaginary past of the classics as idealised by artists, poets and scientists of the early modern Enlightenment.[45]
The historical evolution of climate, vegetation and landscape in southern Europe from prehistoric times to the present is much more complex and underwent various changes. For example, some of the deforestation had already taken place before the Roman age. While in the Roman age large enterprises as the Latifundiums took effective care of forests and agriculture, the largest depopulation effects came with the end of the empire. Some[who?] assume that the major deforestation took place in modern times — the later usage patterns were also quite different e.g. in southern and northern Italy. Also, the climate has usually been unstable and showing various ancient and modern "Little Ice Ages",[46] and plant cover accommodated to various extremes and became resilient with regard to various patterns of human activity.[45]
Humanisation was therefore not the cause of climate change but followed it.[45] The wide ecological diversity typical of Mediterranean Europe is predominantly based on human behaviour, as it is and has been closely related human usage patterns.[45] The diversity range was enhanced by the widespread exchange and interaction of the longstanding and highly diverse local agriculture, intense transport and trade relations, and the interaction with settlements, pasture and other land use. The greatest human-induced changes, however, came since World War II, respectively in line with the '1950s-syndrome'[47] as rural populations throughout the region abandoned traditional subsistence economies. Grove and Rackham suggest that the locals left the traditional agricultural patterns towards taking a role as scenery-setting agents for the then much more important (tourism) travellers. This resulted in more monotonous, large-scale formations.[45] Among further current important threats to Mediterranean landscapes are overdevelopment of coastal areas, abandonment of mountains and, as mentioned, the loss of variety via the reduction of traditional agricultural occupations.[45]
Natural hazards
The region has a variety of geological hazards which have closely interacted with human activity and land use patterns. Among others, in the eastern mediterrenian, the Thera eruption, dated to the 17th or 16th century BC, caused a large tsunami that some experts hypothesise devastated the Minoan civilisation on the nearby island of Crete, further leading some to believe that this may have been the catastrophe that inspired the Atlantis legend.[48] Mount Vesuvius is the only active volcano on the European mainland, while others as Mount Etna and Stromboli are to be found on neighbouring islands. The region around Vesuvius including the Phlegraean Fields Caldera west of Naples are quite active[49] and constitute the most densely populated volcanic region in the world and eruptive event may occure within decades.[50]
Vesuvius itself is regarded as quite dangerous due to a tendency towards explosive (Plinian) eruptions.[51] It is best known for its eruption in AD 79 that led to the burying and destruction of the Roman cities of Pompeii and Herculaneum.
The large experience of member states and regional authorities has lead to exchange on the international level with cooperation of NGOs, states, regional and municipality authorities and private persons.[52] The Greek–Turkish earthquake diplomacy is a quite positive example of natural hazards leading to improved relations of traditional rivals in the region after earthquakes in İzmir and Athens 1999. The European Union Solidarity Fund (EUSF) was set up to respond to major natural disasters and express European solidarity to disaster-stricken regions within all of Europe.[53] The largest amount of fund requests in the EU is being directed to forest fires, followed by floodings and earthquakes. Forest fires are, whether man made or natural, an often recurring and dangerous hazard in the Mediterranean region.[52] Also, tsunamis are an often underestimated hazard in the region. For example, the 1908 Messina earthquake and tsunami took more than 123,000 lives in Sicily and Calabria and is among the most deadly natural disasters in modern Europe.
Biodiversity
See also: List of fish of the Mediterranean Sea and List of fish of the Black Sea
Invasive species

The Reticulate whipray is one of the species that colonised the eastern Mediterranean through the Suez Canal.
The opening of the Suez Canal in 1869 created the first salt-water passage between the Mediterranean and Red Sea. The Red Sea is higher than the Eastern Mediterranean, so the canal serves as a tidal strait that pours Red Sea water into the Mediterranean. The Bitter Lakes, which are hyper-saline natural lakes that form part of the canal, blocked the migration of Red Sea species into the Mediterranean for many decades, but as the salinity of the lakes gradually equalised with that of the Red Sea, the barrier to migration was removed, and plants and animals from the Red Sea have begun to colonise the Eastern Mediterranean. The Red Sea is generally saltier and more nutrient-poor than the Atlantic, so the Red Sea species have advantages over Atlantic species in the salty and nutrient-poor Eastern Mediterranean. Accordingly, Red Sea species invade the Mediterranean biota, and not vice versa; this phenomenon is known as the Lessepsian migration (after Ferdinand de Lesseps, the French engineer) or Erythrean invasion. The construction of the Aswan High Dam across the Nile River in the 1960s reduced the inflow of freshwater and nutrient-rich silt from the Nile into the Eastern Mediterranean, making conditions there even more like the Red Sea and worsening the impact of the invasive species.
Invasive species have become a major component of the Mediterranean ecosystem and have serious impacts on the Mediterranean ecology, endangering many local and endemic Mediterranean species. A first look at some groups of exotic species show that more than 70% of the non-indigenous decapods and about 63% of the exotic fishes occurring in the Mediterranean are of Indo Pacific origin,[54] introduced into the Mediterranean through the Suez Canal. This makes the Canal as the first pathway of arrival of "alien" species into the Mediterranean. The impacts of some lessepsian species have proven to be considerable mainly in the Levantine basin of the Mediterranean, where they are replacing native species and becoming a "familiar sight".
According to the International Union for Conservation of Nature definition, as well as Convention on Biological Diversity (CBD) and Ramsar Convention terminologies, they are alien species, as they are non-native (non-indigenous) to the Mediterranean Sea, and they are outside their normal area of distribution which is the Indo-Pacific region. When these species succeed in establishing populations in the Mediterranean sea, compete with and begin to replace native species they are "Alien Invasive Species", as they are an agent of change and a threat to the native biodiversity. In the context of CBD, "introduction" refers to the movement by human agency, indirect or direct, of an alien species outside of its natural range (past or present). The Suez Canal, being an artificial (man made) canal, is a human agency. Lessepsian migrants are therefore "introduced" species (indirect, and unintentional). Whatever wording is chosen, they represent a threat to the native Mediterranean biodiversity, because they are non-indigenous to this sea. In recent years, the Egyptian government's announcement of its intentions to deepen and widen the canal have raised concerns from marine biologists, fearing that such an act will only worsen the invasion of Red Sea species into the Mediterranean, facilitating the crossing of the canal for yet additional species.[55]
Arrival of new tropical Atlantic species
In recent decades, the arrival of exotic species from the tropical Atlantic has become a noticeable feature. Whether this reflects an expansion of the natural area of these species that now enter the Mediterranean through the Gibraltar strait, because of a warming trend of the water caused by global warming; or an extension of the maritime traffic; or is simply the result of a more intense scientific investigation, is still an open question. While not as intense as the "lessepsian" movement, the process may be scientific interest and may therefore warrant increased levels of monitoring.[citation needed]
Sea-level rise
By 2100, the overall level of the Mediterranean could rise between 3 to 61 cm (1.2 to 24.0 in) as a result of the effects of climate change.[56] This could have adverse effects on populations across the Mediterranean:
Rising sea levels will submerge parts of Malta. Rising sea levels will also mean rising salt water levels in Malta's groundwater supply and reduce the availability of drinking water.[57]
A 30 cm (12 in) rise in sea level would flood 200 square kilometres (77 sq mi) of the Nile Delta, displacing over 500,000 Egyptians.[58]
Coastal ecosystems also appear to be threatened by sea level rise, especially enclosed seas such as the Baltic, the Mediterranean and the Black Sea. These seas have only small and primarily east-west movement corridors, which may restrict northward displacement of organisms in these areas.[59] Sea level rise for the next century (2100) could be between 30 cm (12 in) and 100 cm (39 in) and temperature shifts of a mere 0.05-0.1 °C in the deep sea are sufficient to induce significant changes in species richness and functional diversity.[60]
Pollution
Pollution in this region has been extremely high in recent years.[when?] The United Nations Environment Programme has estimated that 650,000,000 t (720,000,000 short tons) of sewage, 129,000 t (142,000 short tons) of mineral oil, 60,000 t (66,000 short tons) of mercury, 3,800 t (4,200 short tons) of lead and 36,000 t (40,000 short tons) of phosphates are dumped into the Mediterranean each year.[61] The Barcelona Convention aims to 'reduce pollution in the Mediterranean Sea and protect and improve the marine environment in the area, thereby contributing to its sustainable development.'[62] Many marine species have been almost wiped out because of the sea's pollution. One of them is the Mediterranean Monk Seal which is considered to be among the world's most endangered marine mammals.[63]
The Mediterranean is also plagued by marine debris. A 1994 study of the seabed using trawl nets around the coasts of Spain, France and Italy reported a particularly high mean concentration of debris; an average of 1,935 items per km². Plastic debris accounted for 76%, of which 94% was plastic bags.[64]
Shipping

The port of Piraeus is the busiest passenger port in Europe and the Mediterranean.[65]
Some of the world's busiest shipping routes are in the Mediterranean Sea. It is estimated that approximately 220,000 merchant vessels of more than 100 tonnes cross the Mediterranean Sea each year—about one third of the world's total merchant shipping. These ships often carry hazardous cargo, which if lost would result in severe damage to the marine environment.
The discharge of chemical tank washings and oily wastes also represent a significant source of marine pollution. The Mediterranean Sea constitutes 0.7% of the global water surface and yet receives seventeen percent of global marine oil pollution. It is estimated that every year between 100,000 t (98,000 long tons) and 150,000 t (150,000 long tons) of crude oil are deliberately released into the sea from shipping activities.
Approximately 370,000,000 t (360,000,000 long tons) of oil are transported annually in the Mediterranean Sea (more than 20% of the world total), with around 250-300 oil tankers crossing the Sea every day. Accidental oil spills happen frequently with an average of 10 spills per year. A major oil spill could occur at any time in any part of the Mediterranean.[60]
Tourism

Antalya on the Turkish Riviera (Turquoise Coast) is the third most visited city in the world with 10.5 million tourists.
With a unique combination of pleasant climate, beautiful coastline, rich history and diverse culture the Mediterranean region is the most popular tourist destination in the world—attracting approximately one third of the world's international tourists.
Tourism is one of the most important sources of income for many Mediterranean countries. It also supports small communities in coastal areas and islands by providing alternative sources of income far from urban centres. However, tourism has also played major role in the degradation of the coastal and marine environment. Rapid development has been encouraged by Mediterranean governments to support the large numbers of tourists visiting the region each year. But this has caused serious disturbance to marine habitats such as erosion and pollution in many places along the Mediterranean coasts.
Tourism often concentrates in areas of high natural wealth, causing a serious threat to the habitats of endangered Mediterranean species such as sea turtles and monk seals. Reductions in natural wealth may reduce incentives for tourists to visit.[60]

Beach house in Oliva.Spain fronting the Mediterranean Sea.
 

Fishing on the beach in Oliva, Spain
Overfishing
Fish stock levels in the Mediterranean Sea are alarmingly low. The European Environment Agency says that over 65% of all fish stocks in the region are outside safe biological limits and the United Nations Food and Agriculture Organisation, that some of the most important fisheries—such as albacore and bluefin tuna, hake, marlin, swordfish, red mullet and sea bream—are threatened.[date missing]
There are clear indications that catch size and quality have declined, often dramatically, and in many areas larger and longer-lived species have disappeared entirely from commercial catches.
Large open water fish like tuna have been a shared fisheries resource for thousands of years but the stocks are now dangerously low. In 1999, Greenpeace published a report revealing that the amount of bluefin tuna in the Mediterranean had decreased by over 80% in the previous 20 years and government scientists warn that without immediate action the stock will collapse.
Aquaculture

Aquaculture in western Greece
Question book-new.svg
This section does not cite any references or sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (October 2010)
Aquaculture is expanding rapidly—often without proper environmental assessment—and currently accounts for 30% of the fish protein consumed worldwide. The industry claims that farmed seafood lessens the pressure on wild fish stocks, yet many of the farmed species are carnivorous, consuming up to five times their weight in wild fish.
Mediterranean coastal areas are already over exposed to human influence, with pristine areas becoming ever scarcer. The aquaculture sector adds to this pressure, requiring areas of high water quality to set up farms. The installation of fish farms close to vulnerable and important habitats such as seagrass meadows is particularly concerning.

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 20:35 , Processed in 0.126764 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部