搜索
热搜: music
门户 Wiki Wiki Mathematics view content

Squaring the plane

2014-6-15 23:21| view publisher: amanda| views: 1002| wiki(57883.com) 0 : 0

description: Cubing the cube is the analogue in three dimensions of squaring the square: that is, given a cube C, the problem of dividing it into finitely many smaller cubes, no two congruent.Unlike the case of sq ...
Cubing the cube is the analogue in three dimensions of squaring the square: that is, given a cube C, the problem of dividing it into finitely many smaller cubes, no two congruent.
Unlike the case of squaring the square, a hard but solvable problem, cubing the cube is impossible. This can be shown by a relatively simple argument. Consider a hypothetical cubed cube. The bottom face of this cube is a squared square; lift off the rest of the cube, so you have a square region of the plane covered with a collection of cubes.
Consider the smallest cube in this collection, with side c (call it S). Since the smallest square of a squared square cannot be on its edge, its neighbours will all tower over it, meaning that there isn't space to put a cube of side larger than c on top of it. Since the construction is a cubed cube, you're not allowed to use a cube of side equal to c; so only smaller cubes may stand upon S. This means that the top face of S must be a squared square, and the argument continues by infinite descent. Thus it is not possible to dissect a cube into finitely many smaller cubes of different sizes.
Similarly, it is impossible to hypercube a hypercube, because each cell of the hypercube would need to be a cubed cube, and so on into the higher dimensions.

In 1975, Solomon Golomb raised the question whether the whole plane can be tiled by squares whose sizes are all natural numbers without repetitions, which he called the heterogeneous tiling conjecture. This problem was later publicized by Martin Gardner in his Scientific American column and appeared in several books, but it defied solution for over 30 years. In Tilings and Patterns, published in 1987, Branko Grünbaum and G. C. Shephard stated that in all perfect integral tilings of the plane known at that time, the sizes of the squares grew exponentially.
Recently, James Henle and Frederick Henle proved that this, in fact, can be done. Their proof is constructive and proceeds by "puffing up" an L-shaped region formed by two side-by-side and horizontally flush squares of different sizes to a perfect tiling of a larger rectangular region, then adjoining the square of the smallest size not yet used to get another, larger L-shaped region. The squares added during the puffing up procedure have sizes that have not yet appeared in the construction and the procedure is set up so that the resulting rectangular regions are expanding in all four directions, which leads to a tiling of the whole plane.

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 21:23 , Processed in 0.143169 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部