搜索
热搜: music
门户 Wiki Wiki Health view content

Industrial Revolution

2014-4-7 08:42| view publisher: amanda| views: 1002| wiki(57883.com) 0 : 0

description: The Industrial Revolution was the transition to new manufacturing processes in the period from about 1760 to sometime between 1820 and 1840. This transition included going from hand production methods ...
The Industrial Revolution was the transition to new manufacturing processes in the period from about 1760 to sometime between 1820 and 1840. This transition included going from hand production methods to machines, new chemical manufacturing and iron production processes, improved efficiency of water power, the increasing use of steam power and the development of machine tools. It also included the change from wood and other bio-fuels to coal.

Textiles were the dominant industry of the Industrial Revolution in terms of employment, value of output and capital invested. Textiles were also the first to use modern production methods.[2]

The Industrial Revolution marks a major turning point in history; almost every aspect of daily life was influenced in some way. In particular, average income and population began to exhibit unprecedented sustained growth. In the words of Nobel Prize winner Robert E. Lucas, Jr., "For the first time in history, the living standards of the masses of ordinary people have begun to undergo sustained growth ... Nothing remotely like this economic behavior is mentioned by the classical economists, even as a theoretical possibility."[3]

The Industrial Revolution began in Great Britain and within a few decades spread to Western Europe and the United States. The period of time covered by the Industrial Revolution varies with different historians. Eric Hobsbawm held that it 'broke out' in Britain in the 1780s and was not fully felt until the 1830s or 1840s,[4] while T. S. Ashton held that it occurred roughly between 1760 and 1830.[5]

Some 20th-century historians such as John Clapham and Nicholas Crafts have argued that the process of economic and social change took place gradually and the term revolution is a misnomer. This is still a subject of debate among historians.[6][7] GDP per capita was broadly stable before the Industrial Revolution and the emergence of the modern capitalist economy.[8] The Industrial Revolution began an era of per-capita economic growth in capitalist economies.[9] Economic historians are in agreement that the onset of the Industrial Revolution is the most important event in the history of humanity since the domestication of animals and plants.[10]

The First Industrial Revolution evolved into the Second Industrial Revolution in the transition years between 1840 and 1870, when technological and economic progress continued with the increasing adoption of steam-powered boats, ships and railways, the large scale manufacture of machine tools and the increasing use of machinery in steam powered factories.[11][12][13]
EtymologyThe earliest use of the term "Industrial Revolution" seems to have been in a letter of 6 July 1799 written by French envoy Louis-Guillaume Otto, announcing that France had entered the race to industrialise.[14] In his 1976 book Keywords: A Vocabulary of Culture and Society, Raymond Williams states in the entry for "Industry": "The idea of a new social order based on major industrial change was clear in Southey and Owen, between 1811 and 1818, and was implicit as early as Blake in the early 1790s and Wordsworth at the turn of the [19th] century." The term Industrial Revolution applied to technological change was becoming more common by the late 1830s, as in Jérôme-Adolphe Blanqui description in 1837 of la révolution industrielle.[15] Friedrich Engels in The Condition of the Working Class in England in 1844 spoke of "an industrial revolution, a revolution which at the same time changed the whole of civil society". However, although Engels wrote in the 1840s, his book was not translated into English until the late nineteenth century, and his expression did not enter everyday language until then. Credit for popularising the term may be given to Arnold Toynbee, whose 1881 lectures gave a detailed account of the term.[16]

Important technological developmentsThe commencement of the Industrial Revolution is closely linked to a small number of innovations,[17] beginning in the second half of the 18th century. By the 1830s the following gains had been made in important technologies:

Textiles – Mechanized cotton spinning powered by steam or water increased the output of a worker by a factor of about 1000. The power loom increased the output of a worker by a factor of over 40.[18] The cotton gin increased productivity or removing seed from cotton by a factor of 50.[12] Large gains in productivity also occurred in spinning and weaving of wool and linen, but they were not as great as in cotton.[19]
Steam power – The efficiency of steam engines increased so that they used between one-fifth and one-tenth as much fuel. The adaption of stationary steam engines to rotary motion made them suitable for industrial uses. The high pressure engine had a high power to weight ratio, making it suitable for transportation. Steam power underwent a rapid expansion after 1800.
Iron making – The substitution of coke for charcoal greatly lowered the fuel cost of pig iron and wrought iron production.[20] Using coke also allowed larger blast furnaces,[21][22] resulting in economies of scale. The cast iron blowing cylinder was first used in 1760. It was later improved by making it double acting, which allowed higher furnace temperatures. The puddling process produced a structural grade iron at a lower cost than the finery forge.[23] The rolling mill was fifteen times faster than hammering wrought iron.[23] Hot blast (1829) greatly increased fuel efficiency in iron production in the following decades.
Textile manufactureMain article: Textile manufacture during the Industrial Revolution
In the late 17th and early 18th centuries the British government passed a series of Calico Acts in order to protect the domestic woolen industry from the increasing amounts of cotton fabric that were being imported from East India.[24][25]

There was also a demand for heavier fabric, which was met by a domestic industry around Lancashire that produced fustian, a cloth with flax warp and cotton weft. Flax was used for the warp because wheel spun cotton did not have sufficient strength, but the resulting blend was not as soft as 100% cotton and was more difficult to sew.[25]

Spinning and weaving were done in households, for domestic consumption and as a cottage industry under the putting-out system. Occasionally the work was done in the workshop of a master weaver. Under the putting-out system, home based workers produced under contract to merchant sellers, who often supplied the raw materials. In the off season the women, typically farmers' wives, did the spinning and the men did the weaving. Using the spinning wheel it took anywhere from four to eight spinners to supply one hand loom weaver.[19][25][26] The flying shuttle patented in 1733 by John Kay, with a number of subsequent improvements including an important one in 1747, doubled the output of a weaver, worsening the imbalance between spinning and weaving. It became widely used around Lancashire after 1760 when Robert Kay, John's son, invented the drop box.[27]

Watch video: Demonstration of fly shuttle on YouTube
Lewis Paul patented the roller spinning machine and the flyer-and-bobbin system for drawing wool to a more even thickness, developed with the help of John Wyatt in Birmingham. Paul and Wyatt opened a mill in Birmingham which used their new rolling machine powered by a donkey. In 1743, a factory was opened in Northampton with fifty spindles on each of five of Paul and Wyatt's machines. This operated until about 1764. A similar mill was built by Daniel Bourn in Leominster, but this burnt down. Both Lewis Paul and Daniel Bourn patented carding machines in 1748. Using two sets of rollers that travelled at different speeds, it was later used in the first cotton spinning mill. Lewis's invention was later developed and improved by Richard Arkwright in his water frame and Samuel Crompton in his spinning mule.

 
Model of the spinning jenny in a museum in Wuppertal. Invented by James Hargreaves in 1764, the spinning jenny was one of the innovations that started the revolutionIn 1764 in the village of Stanhill, Lancashire, James Hargreaves invented the spinning jenny, which he patented in 1770. It was the first practical spinning frame with multiple spindles.[28] The jenny worked in a similar manner to the spinning wheel, by first clamping down on the fibers, then by drawing them out, followed by twisting.[29] It was a simple, wooden framed machine that only cost about £6 for a 40 spindle model in 1792,[30] and was used mainly by home spinners. The jenny produced a lightly twisted yarn only suitable for weft, not warp.[31]

The spinning frame or water frame was developed by Richard Arkwright who, along with two partners, patented it in 1769. The design was partly based on a spinning machine built for Thomas High by clock maker John Kay, who was hired by Arkwright.[32] For each spindle, the water frame used a series of four pairs of rollers, each operating at a successively higher rotating speed, to draw out the fiber, which was then twisted by the spindle. The roller spacing was slightly longer than the fiber length. Too close a spacing caused the fibers to break while too distant a spacing caused uneven thread. The top rollers were leather covered and loading on the rollers was applied by a weight. The weights kept the twist from backing up before the rollers. The bottom rollers were wood and metal, with fluting along the length. The water frame was able to produce a hard, medium count thread suitable for warp, finally allowing 100% cotton cloth to be made in Britain. A horse powered the first factory to use the spinning frame. Water power was used by Arkwright and partners at a factory in Cromford, Derbyshire in 1771, giving the invention its name.

Watch video: Demonstration of water frame on YouTube
 
The only surviving example of a spinning mule built by the inventor Samuel CromptonSamuel Crompton's Spinning Mule, introduced in 1779, was a combination of the spinning jenny and the water frame in which the spindles were placed on a carriage, which went through an operational sequence during which the rollers stopped while the carriage moved away from the drawing roller to finish drawing out the fibers as the spindles started rotating.[33] Crompton's mule was able to produce finer thread than hand spinning and at a lower cost. Mule spun thread was of suitable strength to be used as warp, and finally allowed Britain to produce good quality calico cloth.[33]

Watch video: Demonstration of spinning mule on YouTube
 
Interior of Marshall's Temple WorksRealizing that the expiration of the Arkwright patent would greatly increase the supply of spun cotton and lead to a shortage of weavers, Edmund Cartwright developed a vertical power loom which he patented in 1785. In 1776 he patented a two man operated loom, that was more conventional.[34] Cartwright built two factories; the first burned down and the second was sabotaged by his workers. Cartwright's loom design had several flaws, the most serious being thread breakage. Samuel Horrocks patented a fairly successful loom in 1813. Horock's loom was improved by Richard Roberts in 1822 and these were produced in large numbers by Roberts, Hill & Co.[35]

The demand for cotton presented an opportunity to planters in the Southern United States, who thought upland cotton would be a profitable crop if a better way could be found to remove the seed. Eli Whitney responded to the challenge by inventing the cotton gin, an inexpensive device. With a cotton gin a man could remove seed from as much upland cotton in one day as would have previously taken a woman working two months to process at one pound per day.[12]

Other inventors increased the efficiency of the individual steps of spinning (carding, twisting and spinning, and rolling) so that the supply of yarn increased greatly, which fed a weaving industry that was advancing with improvements to shuttles and the loom or 'frame'. The output of an individual labourer increased dramatically, with the effect that the new machines were seen as a threat to employment, and early innovators were attacked and their inventions destroyed.

To capitalise upon these advances, it took a class of entrepreneurs, of which the most famous is Richard Arkwright. He is credited with a list of inventions, but these were actually developed by people such as Thomas Highs and John Kay; Arkwright nurtured the inventors, patented the ideas, financed the initiatives, and protected the machines. He created the cotton mill which brought the production processes together in a factory, and he developed the use of power—first horse power and then water power—which made cotton manufacture a mechanised industry. Before long steam power was applied to drive textile machinery. Manchester acquired the nickname Cottonopolis during the early 19th century owing to its sprawl of textile factories.[36]

Metallurgy
The Reverberatory Furnace could produce wrought iron using mined coal. The burning coal remained separate from the iron ore and so did not contaminate the iron with impurities like sulphur and ash. This opened the way to increased iron production.
The Iron Bridge, Shropshire, England
Coalbrookdale by Night by Philip James de Loutherbourg, painted 1801. This shows Madeley Wood (or Bedlam) Furnaces, which belonged to the Coalbrookdale Company from 1776 to 1796.A major change in the metal industries during the era of the Industrial Revolution was the replacement of wood and other bio-fuels with coal. For a given amount of heat, coal required much less labor to mine than cutting wood,[37] and coal was more abundant than wood.[38]

Use of coal in smelting started somewhat before the Industrial Revolution, based on innovations by Sir Clement Clerke and others from 1678, using coal reverberatory furnaces known as cupolas. These were operated by the flames playing on the ore and charcoal or coke mixture, reducing the oxide to metal. This has the advantage that impurities (such as sulfur ash) in the coal do not migrate into the metal. This technology was applied to lead from 1678 and to copper from 1687. It was also applied to iron foundry work in the 1690s, but in this case the reverberatory furnace was known as an air furnace. The foundry cupola is a different (and later) innovation.

This was followed by Abraham Darby, who made great strides using coke to fuel his blast furnaces at Coalbrookdale in 1709. However, the coke pig iron he made was used mostly for the production of cast-iron goods such as pots and kettles. He had the advantage over his rivals in that his pots, cast by his patented process, were thinner and cheaper than theirs. Coke pig iron was hardly used to produce bar iron in forges until the mid-1750s, when his son Abraham Darby II built Horsehay and Ketley furnaces (not far from Coalbrookdale). By then, coke pig iron was cheaper than charcoal pig iron. Since cast iron was becoming cheaper and more plentiful, it began being a structural material following the building of the innovative Iron Bridge in 1778 by Abraham Darby III.

Bar iron for smiths to forge into consumer goods was still made in finery forges, as it long had been. However, new processes were adopted in the ensuing years. The first is referred to today as potting and stamping, but this was superseded by Henry Cort's puddling process.

Henry Cort developed two significant iron manufacturing processes: rolling in 1783 and puddling in 1784.[39] Rolling replaced hammering for consolidating wrought iron and expelling some of the dross. Rolling was 15 times faster than hammering with a trip hammer. Puddling produced a structural grade iron at a relatively low cost.

Puddling was a means of decarburizing pig iron by slow oxidation, with iron ore as the oxygen source, as the iron was manually stirred using a long rod. The decarburized iron, having a higher melting point than cast iron, was raked into globs by the puddler. When the glob was large enough the puddler would remove it. Puddling was backbreaking and extremely hot work. Few puddlers lived to be 40. Puddling was done in a reverberatory furnace, allowing coal or coke to be used as fuel. The puddling process continued to be used until the late 19th century when iron was being displaced by steel. Because puddling required human skill in sensing the iron globs, it was never successfully mechanized.

Up to that time, British iron manufacturers had used considerable amounts of imported iron to supplement native supplies. This came principally from Sweden from the mid-17th century and later also from Russia from the end of the 1720s. However, from 1785, imports decreased because of the new iron making technology, and Britain became an exporter of bar iron as well as manufactured wrought iron consumer goods.

Two decades before the Industrial Revolution an improvement was made in the production of steel, which was an expensive commodity and used only where iron would not do, such as for cutting edge tools and for springs. Benjamin Huntsman developed his crucible steel technique in the 1740s. The raw material for this was blister steel, made by the cementation process.

The supply of cheaper iron and steel aided a number of industries such as those making nails, hinges, wire and other hardware items. The development of machine tools allowed better working of iron, causing it to be increasingly used in the rapidly growing machinery and engine industries.

Steam powerMain article: Steam power during the Industrial Revolution
 
The 1698 Savery Engine – the world's first commercially useful steam engine: built by Thomas SaveryThe development of the stationary steam engine was an important element of the Industrial Revolution; however, for most of the period of the Industrial Revolution, the majority of industrial power was supplied by water and wind. In Britain by 1800 an estimated 10,000 horsepower was being supplied by steam. By 1815 steam power had grown to 210,000 hp.[40] Small power requirements continued to be provided by animal and human muscle until the late 19th century.[41]

The first real attempt at industrial use of steam power was due to Thomas Savery in 1698. He constructed and patented in London a low-lift combined vacuum and pressure water pump, that generated about one horsepower (hp) and was used in numerous water works and tried in a few mines (hence its "brand name", The Miner's Friend). Savery's pump was economical in small horspower ranges, but was prone to boiler explosions in larger sizes. Savery pumps continued to be produced until the late 18th century.

 
Newcomen's steam powered atmospheric engine was the first practical engine. Subsequent steam engines were to power the Industrial RevolutionThe first safe and successful steam power plant was introduced by Thomas Newcomen before 1712. A number of Newcomen engines were successfully put to use in Britain for draining hitherto unworkable deep mines, with the engine on the surface; these were large machines, requiring a lot of capital to build, and produced about 5 hp (3.7 kW). They were extremely inefficient by modern standards, but when located where coal was cheap at pit heads, opened up a great expansion in coal mining by allowing mines to go deeper. Despite their disadvantages, Newcomen engines were reliable and easy to maintain and continued to be used in the coalfields until the early decades of the 19th century. By 1729, when Newcomen died, his engines had spread (first) to Hungary in 1722, Germany, Austria, and Sweden. A total of 110 are known to have been built by 1733 when the joint patent expired, of which 14 were abroad. In the 1770s, the engineer John Smeaton built some very large examples and introduced a number of improvements. A total of 1,454 engines had been built by 1800.[42]

 
Scottish mechanical engineer and inventor James WattA fundamental change in working principles was brought about by Scotsman James Watt. In close collaboration with Englishman Matthew Boulton, he had succeeded by 1778 in perfecting his steam engine, which incorporated a series of radical improvements, notably the closing off of the upper part of the cylinder thereby making the low pressure steam drive the top of the piston instead of the atmosphere, use of a steam jacket and the celebrated separate steam condenser chamber. The separate condenser did away with the cooling water that had been injected directly into the cylinder, which cooled the cylinder and wasted steam. Likewise, the steam jacket kept steam from condensing in the cylinder, also improving efficiency. These improvements increased engine efficiency so that Boulton & Watts engines used only 20-25% as much coal per horsepower-hour as Newcomen's. Boulton and Watt opened the Soho Foundry, for the manufacture of such engines, in 1795.

By 1783 the Watt steam engine had been fully developed into a double-acting rotative type, which meant that it could be used to directly drive the rotary machinery of a factory or mill. Both of Watt's basic engine types were commercially very successful, and by 1800, the firm Boulton & Watt had constructed 496 engines, with 164 driving reciprocating pumps, 24 serving blast furnaces, and 308 powering mill machinery; most of the engines generated from 5 to 10 hp (7.5 kW).

The development of machine tools, such as the lathe, planing and shaping machines powered by these engines, enabled all the metal parts of the engines to be easily and accurately cut and in turn made it possible to build larger and more powerful engines.

Until about 1800, the most common pattern of steam engine was the beam engine, built as an integral part of a stone or brick engine-house, but soon various patterns of self-contained portative engines (readily removable, but not on wheels) were developed, such as the table engine. Around the start of the 19th century, the Cornish engineer Richard Trevithick, and the American, Oliver Evans began to construct higher pressure non-condensing steam engines, exhausting against the atmosphere. This allowed an engine and boiler to be combined into a single unit compact enough to be used on mobile road and rail locomotives and steam boats.

In the early 19th century after the expiration of Watt's patent, the steam engine underwent many improvements by a host of inventors and engineers.

Machine toolsMain article: Machine tool
See also: Interchangeable parts
 
Maudslay's famous early screw-cutting lathes of circa 1797 and 1800.
The Middletown milling machine of circa 1818, associated with Robert Johnson and Simeon North.
The milling machine built by James Nasmyth between 1829 and 1831 for milling the six sides of a hex nut using an indexing fixture.
Sir Joseph Whitworth, a leading machine tool maker and namesake of the British Standard Whitworth thread for machine screws.The Industrial Revolution created a demand for metal parts used in machinery. This led to the development of several machine tools for cutting metal parts. They have their origins in the tools developed in the 18th century by makers of clocks and watches and scientific instrument makers to enable them to batch-produce small mechanisms.

Before the advent of machine tools, metal was worked manually using the basic hand tools of hammers, files, scrapers, saws and chisels. Consequently, the use of metal was kept to a minimum. Wooden components had the disadvantage of changing dimensions with temperature and humidity, and the various joints tended to rack (work loose) over time. As the Industrial Revolution progressed, machines with metal parts and frames became more common. Hand methods of production were very laborious and costly and precision was difficult to achieve. Pre-industrial machinery was built by various craftsmen—millwrights built water and wind mills, carpenters made wooden framing, and smiths and turners made metal parts.

The first large machine tool was the cylinder boring machine used for boring the large-diameter cylinders on early steam engines. The planing machine, the milling machine and the shaping machine were developed in the early decades of the 19th century. Although the milling machine was invented at this time, it was not developed as a serious workshop tool until somewhat later in the 19th century.

Watch video: Demonstration of industrial lathe on YouTube
Watch video: Demonstration of milling machine on YouTube
Watch video: Demonstration of metal planer on YouTube
Henry Maudslay, who trained a school of machine tool makers early in the 19th century, was a mechanic with superior ability who had been employed at the Royal Arsenal, Woolwich. He was hired away by Joseph Bramah for the production of high security metal locks that required precision craftsmanship. Bramah patented a lathe that had similarities to the slide rest lathe. Maudslay perfected the slide rest lathe, which could cut machine screws of different thread pitches by using changeable gears between the spindle and the lead screw. Before its invention screws could not be cut to any precision using various earlier lathe designs, some of which copied from a template.[43] Maudslay's lathe was called one history's most important inventions.

Maudslay left Bramah's employment and set up his own shop. He was engaged to build the machinery for making ships' pulley blocks for the Royal Navy in the Portsmouth Block Mills. These machines were all metal and were the first machines for mass production and making components with a degree of interchangeability. The lessons Maudslay learned about the need for stability and precision he adapted to the development of machine tools, and in his workshops he trained a generation of men to build on his work, such as Richard Roberts, Joseph Clement and Joseph Whitworth.

James Fox of Derby had a healthy export trade in machine tools for the first third of the century, as did Matthew Murray of Leeds. Roberts was a maker of high-quality machine tools and a pioneer of the use of jigs and gauges for precision workshop measurement.

In half century following the invention of the fundamental machine tools the machinery industry would become the largest segment of the economy, by value added, in the U.S.

Chemicals
The Thames Tunnel (opened 1843).
Cement was used in the world's first underwater tunnelThe large scale production of chemicals was an important development during the Industrial Revolution. The first of these was the production of sulphuric acid by the lead chamber process invented by the Englishman John Roebuck (James Watt's first partner) in 1746. He was able to greatly increase the scale of the manufacture by replacing the relatively expensive glass vessels formerly used with larger, less expensive chambers made of riveted sheets of lead. Instead of making a small amount each time, he was able to make around 100 pounds (50 kg) in each of the chambers, at least a tenfold increase.

The production of an alkali on a large scale became an important goal as well, and Nicolas Leblanc succeeded in 1791 in introducing a method for the production of sodium carbonate. The Leblanc process was a reaction of sulphuric acid with sodium chloride to give sodium sulphate and hydrochloric acid. The sodium sulphate was heated with limestone (calcium carbonate) and coal to give a mixture of sodium carbonate and calcium sulphide. Adding water separated the soluble sodium carbonate from the calcium sulphide. The process produced a large amount of pollution (the hydrochloric acid was initially vented to the air, and calcium sulphide was a useless waste product). Nonetheless, this synthetic soda ash proved economical compared to that from burning specific plants (barilla) or from kelp, which were the previously dominant sources of soda ash,[44] and also to potash (potassium carbonate) derived from hardwood ashes.

These two chemicals were very important because they enabled the introduction of a host of other inventions, replacing many small-scale operations with more cost-effective and controllable processes. Sodium carbonate had many uses in the glass, textile, soap, and paper industries. Early uses for sulphuric acid included pickling (removing rust) iron and steel, and for bleaching cloth.

The development of bleaching powder (calcium hypochlorite) by Scottish chemist Charles Tennant in about 1800, based on the discoveries of French chemist Claude Louis Berthollet, revolutionised the bleaching processes in the textile industry by dramatically reducing the time required (from months to days) for the traditional process then in use, which required repeated exposure to the sun in bleach fields after soaking the textiles with alkali or sour milk. Tennant's factory at St Rollox, North Glasgow, became the largest chemical plant in the world.

After 1860 the focus on chemical innovation was in dyestuffs, and Germany took world leadership, building a strong chemical industry.[45] Aspring chemists flocked to German universities in the 1860–1914 era to learn the latest techniques. British scientists by contrast, lacked research universities and did not train advanced students; instead the practice was to hire German-trained chemists.[46]

CementIn 1824 Joseph Aspdin, a British bricklayer turned builder, patented a chemical process for making portland cement which was an important advance in the building trades. This process involves sintering a mixture of clay and limestone to about 1,400 °C (2,552 °F), then grinding it into a fine powder which is then mixed with water, sand and gravel to produce concrete. Portland cement was used by the famous English engineer Marc Isambard Brunel several years later when constructing the Thames Tunnel.[47] Cement was used on a large scale in the construction of the London sewerage system a generation later.

Gas lightingMain article: Gas lighting
Another major industry of the later Industrial Revolution was gas lighting. Though others made a similar innovation elsewhere, the large scale introduction of this was the work of William Murdoch, an employee of Boulton and Watt, the Birmingham steam engine pioneers. The process consisted of the large scale gasification of coal in furnaces, the purification of the gas (removal of sulphur, ammonia, and heavy hydrocarbons), and its storage and distribution. The first gas lighting utilities were established in London between 1812 and 1820. They soon became one of the major consumers of coal in the UK. Gas lighting had an impact on social and industrial organisation because it allowed factories and stores to remain open longer than with tallow candles or oil. Its introduction allowed night life to flourish in cities and towns as interiors and streets could be lighted on a larger scale than before.

Glass makingMain article: Glass production
 
The Crystal Palace held the Great Exhibition of 1851A new method of producing glass, known as the cylinder process, was developed in Europe during the early 19th century. In 1832, this process was used by the Chance Brothers to create sheet glass. They became the leading producers of window and plate glass. This advancement allowed for larger panes of glass to be created without interruption, thus freeing up the space planning in interiors as well as the fenestration of buildings. The Crystal Palace is the supreme example of the use of sheet glass in a new and innovative structure..

Paper machineMain article: Paper machine
A machine for making a continuous sheet of paper on a loop of wire fabric was patented in 1798 by Nicholas Louis Robert who worked for Saint-Léger Didot family in France. The paper machine is known as a Fourdrinier after the financiers, brothers Sealy and Henry Fourdrinier, who were stationers in London. Although greatly improved and with many variations, the Fourdriner machine is the predominant means of paper production today.

The method of continuous production demonstrated by the paper machine influenced the development of continuous rolling of iron and later steel and other continuous production processes.[48]

AgricultureMain article: British Agricultural Revolution
The British Agricultural Revolution is considered one of the causes of the Industrial Revolution because improved agricultural productivity freed up workers to work in other sectors of the economy.[49]

Industrial technologies that affected farming included the seed drill, the Dutch plow, which contained iron parts, and the threshing machine.

Jethro Tull's invented an improved seed drill in 1701. It was a mechanical seeder which distributed seeds evenly across a plot of land and planted them at the correct depth. This was important because the yield of seeds harvested to seeds planted at that time was around four or five. Tull's seed drill was very expensive and not very reliable and therefore did not have much of an impact. Good quality seed drills were not produced until the mid 18th century.[50]

Joseph Foljambe's Rotherham plough of 1730, was the first commercially successful iron plough.[51] The threshing machine, invented by Andrew Meikle in 1784, displaced hand threshing with a flail, a laborious job that took about one-quarter of agricultural labor.[52] It took several decades to diffuse[53] and was the final straw for many farm labourers, who faced near starvation, leading to the 1830 agricultural rebellion of the Swing Riots.

Machine tools and metalworking techniques developed during the Industrial Revolution eventually resulted in precision manufacturing techniques in the late 19th century for mass-producing agricultural equipment such as reapers, binders and combine harvesters.[54]

MiningCoal mining in Britain, particularly in South Wales started early. Before the steam engine, pits were often shallow bell pits following a seam of coal along the surface, which were abandoned as the coal was extracted. In other cases, if the geology was favourable, the coal was mined by means of an adit or drift mine driven into the side of a hill. Shaft mining was done in some areas, but the limiting factor was the problem of removing water. It could be done by hauling buckets of water up the shaft or to a sough (a tunnel driven into a hill to drain a mine). In either case, the water had to be discharged into a stream or ditch at a level where it could flow away by gravity. The introduction of the steam pump by Savery in 1698 and the Newcomen steam engine in 1712 greatly facilitated the removal of water and enabled shafts to be made deeper, enabling more coal to be extracted. These were developments that had begun before the Industrial Revolution, but the adoption of John Smeaton's improvements to the Newcomen engine followed by James Watt's more efficient steam engines from the 1770s reduced the fuel costs of engines, making mines more profitable.

Coal mining was very dangerous owing to the presence of firedamp in many coal seams. Some degree of safety was provided by the safety lamp which was invented in 1816 by Sir Humphry Davy and independently by George Stephenson. However, the lamps proved a false dawn because they became unsafe very quickly and provided a weak light. Firedamp explosions continued, often setting off coal dust explosions, so casualties grew during the entire 19th century. Conditions of work were very poor, with a high casualty rate from rock falls.

Other developmentsOther developments included more efficient water wheels, based on experiments conducted by the British engineer John Smeaton[55] the beginnings of a machinery industry [56][12] and the rediscovery of concrete (based on hydraulic lime mortar) by John Smeaton, which had been lost for 1300 years.[57]

TransportationMain article: Transport during the British Industrial Revolution
See also: Productivity improving technologies (historical)#Infrastructures
At the beginning of the Industrial Revolution, inland transport was by navigable rivers and roads, with coastal vessels employed to move heavy goods by sea. Railways or wagon ways were used for conveying coal to rivers for further shipment, but canals had not yet been constructed. Animals supplied all of the motive power on land, with sails providing the motive power on the sea.

The Industrial Revolution improved Britain's transport infrastructure with a turnpike road network, a canal and waterway network, and a railway network. Raw materials and finished products could be moved more quickly and cheaply than before. Improved transportation also allowed new ideas to spread quickly.

CanalsMain article: History of the British canal system
 
The Bridgewater Canal, famous because of its commercial success, crossing the Manchester Ship Canal, one of the last canals to be built.Building of canals dates to ancient times. The Grand Canal in China, "the world's largest artificial waterway and oldest canal still in existence," parts of which were started between the 6th and 4th centuries BC, is 1,121 miles (1,804 km) long and links Hangzhou with Beijing.[58]

Canals were the first technology to allow bulk materials to be easily transported across the country, coal being a common commodity. A single canal horse could pull a load dozens of times larger than a cart at a faster pace.[59][60]

Canals began to be built in the late 18th century to link the major manufacturing centres across the country. Known for its huge commercial success, the Bridgewater Canal in North West England, which opened in 1761 and was mostly funded by The 3rd Duke of Bridgewater. From Worsley to the rapidly growing town of Manchester its construction cost £168,000 (£21,920,770 as of 2013),[61][62] but its advantages over land and river transport meant that within a year of its opening in 1761, the price of coal in Manchester fell by about half.[63] This success helped inspire a period of intense canal building, known as Canal Mania.[64] New canals were hastily built in the aim of replicating the commercial success of the Bridgewater Canal, the most notable being the Leeds and Liverpool Canal and the Thames and Severn Canal which opened in 1774 and 1789 respectively.

By the 1820s, a national network was in existence. Canal construction served as a model for the organisation and methods later used to construct the railways. They were eventually largely superseded as profitable commercial enterprises by the spread of the railways from the 1840s on. The last major canal to be built in the United Kingdom was the Manchester Ship Canal, which upon opening in 1894 was the largest ship canal in the world,[65] and opened Manchester as a port. However it never achieved the commercial success its sponsors had hoped for and signalled canals as an dying mode of transport in an age dominated by railways, which were quicker and often cheaper.

Britain's canal network, together with its surviving mill buildings, is one of the most enduring features of the early Industrial Revolution to be seen in Britain.

Roads
Construction of the first macadamized road in the United States (1823). In the foreground, workers are breaking stones "so as not to exceed 6 ounces in weight or to pass a two-inch ring".[66]Much of the original British road system was poorly maintained by thousands of local parishes, but from the 1720s (and occasionally earlier) turnpike trusts were set up to charge tolls and maintain some roads. Increasing numbers of main roads were turnpiked from the 1750s to the extent that almost every main road in England and Wales was the responsibility of a turnpike trust. New engineered roads were built by John Metcalf, Thomas Telford and most notably John McAdam, with the first 'macadamised' stretch of road being Marsh Road at Ashton Gate, Bristol in 1816.[67] The major turnpikes radiated from London and were the means by which the Royal Mail was able to reach the rest of the country. Heavy goods transport on these roads was by means of slow, broad wheeled, carts hauled by teams of horses. Lighter goods were conveyed by smaller carts or by teams of pack horse. Stage coaches carried the rich, and the less wealthy could pay to ride on carriers carts.

RailwaysMain article: History of rail transport in Great Britain
 
Painting depicting the opening of the Liverpool and Manchester Railway in 1830, the first inter-city railway in the world and which spawned Railway Mania due to its success.Wagonways for moving coal in the mining areas had started in the 17th century and were often associated with canal or river systems for the further movement of coal. These were all horse drawn or relied on gravity, with a stationary steam engine to haul the wagons back to the top of the incline. The first applications of the steam locomotive were on wagon or plate ways (as they were then often called from the cast-iron plates used). Horse-drawn public railways did not begin until the early years of the 19th century when improvements to pig and wrought iron production were lowering costs. See: Metallurgy

Reducing friction was one of the major reasons for the success of railroads compared to wagons. This was demonstrated on an iron plate covered wooden tramway in 1805 at Croydon, U.K.

“ A good horse on an ordinary turnpike road can draw two thousand pounds, or one ton. A party of gentlemen were invited to witness the experiment, that the superiority of the new road might be established by ocular demonstration. Twelve wagons were loaded with stones, till each wagon weighed three tons, and the wagons were fastened together. A horse was then attached, which drew the wagons with ease, six miles in two hours, having stopped four times, in order to show he had the power of starting, as well as drawing his great load.”[68]

Steam locomotives began being built after the introduction of high pressure steam engines around 1800. These engines exhausted used steam to the atmosphere, doing away with the condenser and cooling water. They were also much lighter weight and smaller in size for a given horsepower than the stationary condensing engines. A few of these early locomotives were used in mines. Steam-hauled public railways began with the Stockton and Darlington Railway in 1825.

On 15 September 1830, the Liverpool and Manchester Railway was opened, the first inter-city railway in the world and was attended by Prime Minister, the Duke of Wellington.[69] The railway was engineered by Joseph Locke and George Stephenson, linked the rapidly expanding industrial town of Manchester with the port town of Liverpool. The opening was marred by problems, due to the primitive nature of the technology being employed, however problems were gradually ironed out and the railway became highly successful, transporting passengers and freight. The success of the inter-city railway, particularly in the transport of freight and commodities, led to Railway Mania.

Construction of major railways connecting the larger cities and towns began in the 1830s but only gained momentum at the very end of the first Industrial Revolution. After many of the workers had completed the railways, they did not return to their rural lifestyles but instead remained in the cities, providing additional workers for the factories.

Social effectsMain article: Life in Great Britain during the Industrial Revolution
 
A Middleton miner in 1814Standards of livingThe history of the change of living conditions during the industrial revolution has been very controversial, and was the topic that from the 1950s to the 1980s caused most heated debate among economic and social historians.[70] A series of 1950s essays by Henry Phelps Brown and Sheila V. Hopkins later set the academic consensus that the bulk of the population, that was at the bottom of the social ladder, suffered severe reductions in their living standards.[70]

During the period 1813–1913, there was a significant increase in worker wages.[71][72][73]

Food and nutritionChronic hunger and malnutrition were the norm for the majority of the population of the world including Britain and France, until the latter part of the 19th century. Until about 1750, in large part due to malnutrition, life expectancy in France was about 35 years, and only slightly higher in Britain. The U.S. population of the time was adequately fed, were much taller and had life expectancy of 45–50 years.[74]

In Britain and the Netherlands food supply had been increasing and prices falling before the Industrial Revolution due to better agricultural practices; however, population was increasing as well, as noted by Thomas Malthus.[75][76][77][78] Prior to the Industrial Revolution, advances in agriculture or technology soon led to an increase in population, which again strained food and other resources, limiting increases in per capita income. This condition is called the Malthusian trap, and it was finally overcome by industrialization.[79]

Transportation improvements, such as canals and improved roads, also lowered food costs. Railroads were introduced near the end of the Industrial Revolution.

Housing
Over London by Rail Gustave Doré c. 1870. Shows the densely populated and polluted environments created in the new industrial citiesLiving conditions during the Industrial Revolution varied from the splendour of the homes of the owners to the squalor of the lives of the workers.

In The Condition of the Working Class in England in 1844 Friedrich Engels described backstreet sections of Manchester and other mill towns where people lived in crude shanties and shacks, some not being completely enclosed, some with dirt floors. These shantytowns had narrow walkways between irregularly shaped lots and dwellings. Sanitary facilities were nonexistent. These slum areas had extremely high population densities. It was common for groups of unrelated mill workers to share rooms in very low quality housing where eight to ten people may occupy a single room, which often had no furniture, with the occupants sleeping on a pile of straw or sawdust.[80]

These homes would share toilet facilities, have open sewers and would be at risk of developing pathologies associated with persistent dampness. Disease was spread through a contaminated water supply. Conditions did improve during the 19th century as public health acts were introduced covering things such as sewage, hygiene and making some boundaries upon the construction of homes. Not everybody lived in homes like these. The Industrial Revolution created a larger middle class of professionals such as lawyers and doctors. Health conditions improved over the course of the 19th century because of better sanitation; the famines that troubled rural areas did not happen in industrial areas. However, urban people—especially small children—died due to diseases spreading through the cramped living conditions. Tuberculosis (spread in congested dwellings), lung diseases from the mines, cholera from polluted water and typhoid were also common.

In the introduction of the 1892 edition of Engels (1844) he notes that most of the conditions he wrote about in 1844 had been greatly improved.

Clothing and consumer goodsConsumers benefited from falling prices for clothing and household articles such as cast iron cooking utensils, and in the following decades, stoves for cooking and space heating.

Population increaseAccording to Robert Hughes in The Fatal Shore, the population of England and Wales, which had remained steady at 6 million from 1700 to 1740, rose dramatically after 1740. The population of England had more than doubled from 8.3 million in 1801 to 16.8 million in 1850 and, by 1901, had nearly doubled again to 30.5 million.[81] As living conditions and health care improved during the 19th century, Britain's population doubled every 50 years.[82][83] Europe's population increased from about 100 million in 1700 to 400 million by 1900.[84]

The Industrial Revolution was the first period in history during which there was a simultaneous increase in population and in per capita income.[85]

Labour conditionsSocial structure and working conditionsIn terms of social structure, the Industrial Revolution witnessed the triumph of a middle class of industrialists and businessmen over a landed class of nobility and gentry. Ordinary working people found increased opportunities for employment in the new mills and factories, but these were often under strict working conditions with long hours of labour dominated by a pace set by machines. As late as the year 1900, most industrial workers in the United States still worked a 10-hour day (12 hours in the steel industry), yet earned from 20 to 40 percent less than the minimum deemed necessary for a decent life.[86] However, harsh working conditions were prevalent long before the Industrial Revolution took place.[citation needed] Pre-industrial society was very static and often cruel—child labour, dirty living conditions, and long working hours were just as prevalent before the Industrial Revolution.[87]

Factories and urbanisation
Manchester, England ("Cottonopolis"), pictured in 1840, showing the mass of factory chimneysIndustrialisation led to the creation of the factory. Arguably the first highly mechanized was John Lombe's water-powered silk mill at Derby, operational by 1721. Lombe learned silk thread manufacturing by taking a job in an Italy and acting as an industrial spy; however, since the silk industry there was a closely guarded secret, the state of the industry there is unknown. Because Lombe's factory was not successful and because there was no follow through, the rise of the modern factory dates to somewhat later when cotton spinning was mechanized.

The factory system contributed to the growth of urban areas, as large numbers of workers migrated into the cities in search of employment in the factories. Nowhere was this better illustrated than the mills and associated industries of Manchester, nicknamed "Cottonopolis", and the world's first industrial city.[88]

For much of the 19th century, production was done in small mills, which were typically water-powered and built to serve local needs. Later each factory would have its own steam engine and a chimney to give an efficient draft through its boiler.

The transition to industrialisation was not without difficulty. For example, a group of English workers known as Luddites formed to protest against industrialisation and sometimes sabotaged factories.

In other industries the transition to factory production was not so divisive. Some industrialists themselves tried to improve factory and living conditions for their workers. One of the earliest such reformers was Robert Owen, known for his pioneering efforts in improving conditions for workers at the New Lanark mills, and often regarded as one of the key thinkers of the early socialist movement.

By 1746, an integrated brass mill was working at Warmley near Bristol. Raw material went in at one end, was smelted into brass and was turned into pans, pins, wire, and other goods. Housing was provided for workers on site. Josiah Wedgwood and Matthew Boulton (whose Soho Manufactory was completed in 1766) were other prominent early industrialists, who employed the factory system.

Child labour
A young "drawer" pulling a coal tub along a mine gallery.[89] In Britain laws passed in 1842 and 1844 improved mine working conditions.
Wheaton Glass Works, November 1909. Photographed by Lewis Hine.The Industrial Revolution led to a population increase, but the chances of surviving childhood did not improve throughout the Industrial Revolution (although infant mortality rates were reduced markedly).[90][91] There was still limited opportunity for education, and children were expected to work. Employers could pay a child less than an adult even though their productivity was comparable; there was no need for strength to operate an industrial machine, and since the industrial system was completely new there were no experienced adult labourers. This made child labour the labour of choice for manufacturing in the early phases of the Industrial Revolution between the 18th and 19th centuries. In England and Scotland in 1788, two-thirds of the workers in 143 water-powered cotton mills were described as children.[92]

Child labour had existed before the Industrial Revolution, but with the increase in population and education it became more visible. Many children were forced to work in relatively bad conditions for much lower pay than their elders,[93] 10-20% of an adult male's wage.[94] Children as young as four were employed.[94] Beatings and long hours were common, with some child coal miners and hurriers working from 4 am until 5 pm.[94] Conditions were dangerous, with some children killed when they dozed off and fell into the path of the carts, while others died from gas explosions.[94] Many children developed lung cancer and other diseases and died before the age of 25.[94] Workhouses would sell orphans and abandoned children as "pauper apprentices", working without wages for board and lodging.[94] Those who ran away would be whipped and returned to their masters, with some masters shackling them to prevent escape.[94] Children employed as mule scavenger by cotton mills would crawl under machinery to pick up cotton, working 14 hours a day, six days a week. Some lost hands or limbs, others were crushed under the machines, and some were decapitated.[94] Young girls worked at match factories, where phosphorus fumes would cause many to develop phossy jaw.[94] Children employed at glassworks were regularly burned and blinded, and those working at potteries were vulnerable to poisonous clay dust.[94]

Reports were written detailing some of the abuses, particularly in the coal mines[95] and textile factories[96] and these helped to popularise the children's plight. The public outcry, especially among the upper and middle classes, helped stir change in the young workers' welfare.

Politicians and the government tried to limit child labour by law, but factory owners resisted; some felt that they were aiding the poor by giving their children money to buy food to avoid starvation, and others simply welcomed the cheap labour. In 1833 and 1844, the first general laws against child labour, the Factory Acts, were passed in Britain: Children younger than nine were not allowed to work, children were not permitted to work at night, and the work day of youth under the age of 18 was limited to twelve hours. Factory inspectors supervised the execution of the law, however, their scarcity made enforcement difficult.[94] About ten years later, the employment of children and women in mining was forbidden. These laws decreased the number of child labourers; however, child labour remained in Europe and the United States up to the 20th century.[97]

LudditesMain article: Luddite
 
Luddites smashing a power loom in 1812.
The Great Chartist Meeting on Kennington Common, 1848The rapid industrialisation of the English economy cost many craft workers their jobs. The movement started first with lace and hosiery workers near Nottingham and spread to other areas of the textile industry owing to early industrialisation. Many weavers also found themselves suddenly unemployed since they could no longer compete with machines which only required relatively limited (and unskilled) labour to produce more cloth than a single weaver. Many such unemployed workers, weavers and others, turned their animosity towards the machines that had taken their jobs and began destroying factories and machinery. These attackers became known as Luddites, supposedly followers of Ned Ludd, a folklore figure. The first attacks of the Luddite movement began in 1811. The Luddites rapidly gained popularity, and the British government took drastic measures, using the militia or army to protect industry. Those rioters who were caught were tried and hanged, or transported for life.

Unrest continued in other sectors as they industrialised as well, such as with agricultural labourers in the 1830s when large parts of southern Britain were affected by the Captain Swing disturbances. Threshing machines were a particular target, and hayrick burning was a popular activity. However, the riots led to the first formation of trade unions, and further pressure for reform.

Organisation of labourSee also: Trade union#History
The Industrial Revolution concentrated labour into mills, factories and mines, thus facilitating the organisation of combinations or trade unions to help advance the interests of working people. The power of a union could demand better terms by withdrawing all labour and causing a consequent cessation of production. Employers had to decide between giving in to the union demands at a cost to themselves or suffering the cost of the lost production. Skilled workers were hard to replace, and these were the first groups to successfully advance their conditions through this kind of bargaining.

The main method the unions used to effect change was strike action. Many strikes were painful events for both sides, the unions and the management. In Britain, the Combination Act 1799 forbade workers to form any kind of trade union until its repeal in 1824. Even after this, unions were still severely restricted.

In 1832, the year of the Reform Act which extended the vote in Britain but did not grant universal suffrage, six men from Tolpuddle in Dorset founded the Friendly Society of Agricultural Labourers to protest against the gradual lowering of wages in the 1830s. They refused to work for less than 10 shillings a week, although by this time wages had been reduced to seven shillings a week and were due to be further reduced to six shillings. In 1834 James Frampton, a local landowner, wrote to the Prime Minister, Lord Melbourne, to complain about the union, invoking an obscure law from 1797 prohibiting people from swearing oaths to each other, which the members of the Friendly Society had done. James Brine, James Hammett, George Loveless, George's brother James Loveless, George's brother in-law Thomas Standfield, and Thomas's son John Standfield were arrested, found guilty, and transported to Australia. They became known as the Tolpuddle martyrs. In the 1830s and 1840s the Chartist movement was the first large scale organised working class political movement which campaigned for political equality and social justice. Its Charter of reforms received over three million signatures but was rejected by Parliament without consideration.

Working people also formed friendly societies and co-operative societies as mutual support groups against times of economic hardship. Enlightened industrialists, such as Robert Owen also supported these organisations to improve the conditions of the working class.

Unions slowly overcame the legal restrictions on the right to strike. In 1842, a General Strike involving cotton workers and colliers was organised through the Chartist movement which stopped production across Great Britain.[98]

Eventually effective political organisation for working people was achieved through the trades unions who, after the extensions of the franchise in 1867 and 1885, began to support socialist political parties that later merged to became the British Labour Party.

Other effectsThe application of steam power to the industrial processes of printing supported a massive expansion of newspaper and popular book publishing, which reinforced rising literacy and demands for mass political participation.

During the Industrial Revolution, the life expectancy of children increased dramatically. The percentage of the children born in London who died before the age of five decreased from 74.5% in 1730–1749 to 31.8% in 1810–1829.[90]

The growth of modern industry from the late 18th century onward led to massive urbanisation and the rise of new great cities, first in Europe and then in other regions, as new opportunities brought huge numbers of migrants from rural communities into urban areas. In 1800, only 3% of the world's population lived in cities,[99] a figure that has risen to nearly 50% at the beginning of the 21st century.[100] In 1717 Manchester was merely a market town of 10,000 people, but by 1911 it had a population of 2.3 million.[101]

The greatest killer in the cities was tuberculosis (TB).[102] By the late 1800s, between 7 and 9 in 10 city dwellers in Europe and North America were infected with tuberculosis, and about 8 in 10 of those who developed active tuberculosis died of it. Forty percent of deaths among the urban working class were from tuberculosis.[103]

Industrialisation beyond Great BritainContinental EuropeThe Industrial Revolution on Continental Europe came a little later than in Great Britain. In many industries, this involved the application of technology developed in Britain in new places. Often the technology was purchased from Britain or British engineers and entrepreneurs moved abroad in search of new opportunities. By 1809 part of the Ruhr Valley in Westphalia was called 'Miniature England' because of its similarities to the industrial areas of England. The German, Russian and Belgian governments all provided state funding to the new industries. In some cases (such as iron), the different availability of resources locally meant that only some aspects of the British technology were adopted.

Belgium
Workers' housing at Bois-du-Luc (1838–1853) in La LouvièreBelgium was the second country, after Britain, in which the industrial revolution took place and the first in continental Europe:

Wallonia (French speaking southern Belgium) was the first region to follow the British model successfully. Starting in the middle of the 1820s, and especially after Belgium became an independent nation in 1830, numerous works comprising coke blast furnaces as well as puddling and rolling mills were built in the coal mining areas around Liège and Charleroi. The leader was a transplanted Englishman John Cockerill. His factories at Seraing integrated all stages of production, from engineering to the supply of raw materials, as early as 1825.[104]

Wallonia exemplified the radical evolution of industrial expansion. Thanks to coal (the French word "houille" was coined in Wallonia),[105] the region geared up to become the 2nd industrial power in the world after Britain. But it is also pointed out by many researchers, with its Sillon industriel, 'Especially in the Haine, Sambre and Meuse valleys, between the Borinage and Liège, (...) there was a huge industrial development based on coal-mining and iron-making...'.[106] Philippe Raxhon wrote about the period after 1830: "It was not propaganda but a reality the Walloon regions were becoming the second industrial power all over the world after Britain."[107] "The sole industrial centre outside the collieries and blast furnaces of Walloon was the old cloth making town of Ghent."[108] Michel De Coster, Professor at the Université de Liège wrote also: "The historians and the economists say that Belgium was the second industrial power of the world, in proportion to its population and its territory (...) But this rank is the one of Wallonia where the coal-mines, the blast furnaces, the iron and zinc factories, the wool industry, the glass industry, the weapons industry... were concentrated" [109]

Demographic effects
Wallonia's Sillon industriel (the blue area in the north is not in Wallonia)
Gallow frame of the Crachet in Frameries IN Wallonia's French Châssis à molettes or Belfleur (French Chevalement
Official Poster of the Liège's World fair in 1905Wallonia was also the birthplace of a strong Socialist party and strong trade-unions in a particular sociological landscape. At the left, the Sillon industriel, which runs from Mons in the west, to Verviers in the east (except part of North Flanders, in another period of the industrial revolution, after 1920). Even if Belgium is the second industrial country after Britain, the effect of the industrial revolution there was very different. In 'Breaking stereotypes', Muriel Neven and Isabelle Devious say:

The industrial revolution changed a mainly rural society into an urban one, but with a strong contrast between northern and southern Belgium. During the Middle Ages and the Early Modern Period, Flanders was characterised by the presence of large urban centres (...) at the beginning of the nineteenth century this region (Flanders), with an urbanisation degree of more than 30 per cent, remained one of the most urbanised in the world. By compar
up one:Latrinenext:Leeds

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 21:51 , Processed in 0.245821 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部