Continental Europe The Industrial Revolution on Continental Europe came a little later than in Great Britain. In many industries, this involved the application of technology developed in Britain in new places. Often the technology was purchased from Britain or British engineers and entrepreneurs moved abroad in search of new opportunities. By 1809 part of the Ruhr Valley in Westphalia was called 'Miniature England' because of its similarities to the industrial areas of England. The German, Russian and Belgian governments all provided state funding to the new industries. In some cases (such as iron), the different availability of resources locally meant that only some aspects of the British technology were adopted. Belgium Workers' housing at Bois-du-Luc (1838–1853) in La Louvière Belgium was the second country, after Britain, in which the industrial revolution took place and the first in continental Europe: Wallonia (French speaking southern Belgium) was the first region to follow the British model successfully. Starting in the middle of the 1820s, and especially after Belgium became an independent nation in 1830, numerous works comprising coke blast furnaces as well as puddling and rolling mills were built in the coal mining areas around Liège and Charleroi. The leader was a transplanted Englishman John Cockerill. His factories at Seraing integrated all stages of production, from engineering to the supply of raw materials, as early as 1825.[104] Wallonia exemplified the radical evolution of industrial expansion. Thanks to coal (the French word "houille" was coined in Wallonia),[105] the region geared up to become the 2nd industrial power in the world after Britain. But it is also pointed out by many researchers, with its Sillon industriel, 'Especially in the Haine, Sambre and Meuse valleys, between the Borinage and Liège, (...) there was a huge industrial development based on coal-mining and iron-making...'.[106] Philippe Raxhon wrote about the period after 1830: "It was not propaganda but a reality the Walloon regions were becoming the second industrial power all over the world after Britain."[107] "The sole industrial centre outside the collieries and blast furnaces of Walloon was the old cloth making town of Ghent."[108] Michel De Coster, Professor at the Université de Liège wrote also: "The historians and the economists say that Belgium was the second industrial power of the world, in proportion to its population and its territory (...) But this rank is the one of Wallonia where the coal-mines, the blast furnaces, the iron and zinc factories, the wool industry, the glass industry, the weapons industry... were concentrated" [109] Demographic effects Wallonia's Sillon industriel (the blue area in the north is not in Wallonia) Gallow frame of the Crachet in Frameries IN Wallonia's French Châssis à molettes or Belfleur (French Chevalement Official Poster of the Liège's World fair in 1905 Wallonia was also the birthplace of a strong Socialist party and strong trade-unions in a particular sociological landscape. At the left, the Sillon industriel, which runs from Mons in the west, to Verviers in the east (except part of North Flanders, in another period of the industrial revolution, after 1920). Even if Belgium is the second industrial country after Britain, the effect of the industrial revolution there was very different. In 'Breaking stereotypes', Muriel Neven and Isabelle Devious say: The industrial revolution changed a mainly rural society into an urban one, but with a strong contrast between northern and southern Belgium. During the Middle Ages and the Early Modern Period, Flanders was characterised by the presence of large urban centres (...) at the beginning of the nineteenth century this region (Flanders), with an urbanisation degree of more than 30 per cent, remained one of the most urbanised in the world. By comparison, this proportion reached only 17 per cent in Wallonia, barely 10 per cent in most West European countries, 16 per cent in France and 25 per cent in Britain. Nineteenth century industrialisation did not affect the traditional urban infrastructure, except in Ghent (...) Also, in Wallonia the traditional urban network was largely unaffected by the industrialisation process, even though the proportion of city-dwellers rose from 17 to 45 per cent between 1831 and 1910. Especially in the Haine, Sambre and Meuse valleys, between the Borinage and Liège, where there was a huge industrial development based on coal-mining and iron-making, urbanisation was fast. During these eighty years the number of municipalities with more than 5,000 inhabitants increased from only 21 to more than one hundred, concentrating nearly half of the Walloon population in this region. Nevertheless, industrialisation remained quite traditional in the sense that it did not lead to the growth of modern and large urban centres, but to a conurbation of industrial villages and towns developed around a coal-mine or a factory. Communication routes between these small centres only became populated later and created a much less dense urban morphology than, for instance, the area around Liège where the old town was there to direct migratory flows.[110] France The industrial revolution in France followed a particular course as it did not correspond to the main model followed by other countries. Notably, most French historians argue France did not go through a clear take-off.[111] Instead, France's economic growth and industrialisation process was slow and steady through the 18th and 19th centuries. However, some stages were identified by Maurice Lévy-Leboyer: French Revolution and Napoleonic wars (1789–1815), industrialisation, along with Britain (1815–1860), economic slowdown (1860–1905), renewal of the growth after 1905. Germany Main article: Economic history of Germany The BASF-chemical factories in Ludwigshafen, Germany, 1881 Based on its leadership in chemical research in the universities and industrial laboratories, Germany became dominant in the world's chemical industry in the late 19th century. At first the production of dyes based on aniline was critical.[112] Germany's political disunity—with three dozen states—and a pervasive conservatism made it difficult to build railways in the 1830s. However, by the 1840s, trunk lines linked the major cities; each German state was responsible for the lines within its own borders. Lacking a technological base at first, the Germans imported their engineering and hardware from Britain, but quickly learned the skills needed to operate and expand the railways. In many cities, the new railway shops were the centres of technological awareness and training, so that by 1850, Germany was self-sufficient in meeting the demands of railroad construction, and the railways were a major impetus for the growth of the new steel industry. Observers found that even as late as 1890, their engineering was inferior to Britain's. However, German unification in 1870 stimulated consolidation, nationalisation into state-owned companies, and further rapid growth. Unlike the situation in France, the goal was support of industrialisation, and so heavy lines crisscrossed the Ruhr and other industrial districts, and provided good connections to the major ports of Hamburg and Bremen. By 1880, Germany had 9,400 locomotives pulling 43,000 passengers and 30,000 tons of freight, and pulled ahead of France[113] Sweden Main article: Economic history of Sweden During the period 1790–1815 Sweden experienced two parallel economic movements: an agricultural revolution with larger agricultural estates, new crops and farming tools and a commercialisation of farming, and a protoindustrialisation, with small industries being established in the countryside and with workers switching between agricultural work in the summer season and industrial production in the winter season. This led to economic growth benefiting large sections of the population and leading up to a consumption revolution starting in the 1820s. In the period 1815–1850 the protoindustries developed into more specialized and larger industries. This period witness increasing regional specialisation with mining in Bergslagen, textile mills in Sjuhäradsbygden and forestry in Norrland. Several important institutional changes took place in this period, such as free and mandatory schooling introduced 1842 (as first country in the world), the abolishment of a previous national monopoly on trade in handicrafts in 1846, and a stock company law in 1848. During the period 1850–1890 Sweden witnessed a veritable explosion in its export sector, with agricultural crops, wood and steel being the three dominating categories. Sweden abolished most tariffs and other barriers to free trade in the 1850s and joined the gold standard in 1873. During the period 1890–1930 the second industrial revolution took place in Sweden. During this period new industries developed with their focus on the domestic market: mechanical engineering, power utilities, papermaking and textile industries. United States Main article: Technological and industrial history of the United States Slater's Mill See also: History of Lowell, Massachusetts The United States originally used horse-powered machinery to power its earliest factories, but eventually switched to water power, with the consequence that industrialisation was essentially limited to New England and the rest of the Northeastern United States, where fast-moving rivers were located. Horse-drawn production proved to be economically challenging and a more difficult alternative to the newer water-powered production lines. However, the raw materials (cotton) came from the Southern United States. It was not until after the Civil War in the 1860s that steam-powered manufacturing overtook water-powered manufacturing, allowing the industry to fully spread across the nation. Thomas Somers and the Cabot Brothers founded the Beverly Cotton Manufactory in 1787, the first cotton mill in America, the largest cotton mill of its era,[114] and a significant milestone in the research and development of cotton mills in the future. This cotton mill was designed to utilise horse-powered production, however the operators quickly learned that the economic stability of their horse-drawn platform was unstable, and had fiscal issues for years after it was built. Despite the losses, the Manufactory served as a playground of innovation, both in turning a large amount of cotton, but also developing the water-powered milling structure used in Slater's Mill.[115] Bethlehem Steel, founded in 1857, was once the second-largest manufacturer of steel in the United States; its Bethlehem, Pennsylvania, location has been transformed into a casino. Samuel Slater (1768–1835) is the founder of the Slater Mill. As a boy apprentice in Derbyshire, England, he learned of the new techniques in the textile industry and defied laws against the emigration of skilled workers by leaving for New York in 1789, hoping to make money with his knowledge. Slater founded Slater's Mill at Pawtucket, Rhode Island, in 1793. He went on to own thirteen textile mills.[116] Daniel Day established a wool carding mill in the Blackstone Valley at Uxbridge, Massachusetts in 1809, the third woollen mill established in the U.S. (The first was in Hartford, Connecticut, and the second at Watertown, Massachusetts.) The John H. Chafee Blackstone River Valley National Heritage Corridor retraces the history of "America's Hardest-Working River', the Blackstone. The Blackstone River and its tributaries, which cover more than 45 miles (72 km) from Worcester to Providence, was the birthplace of America's Industrial Revolution. At its peak over 1100 mills operated in this valley, including Slater's mill, and with it the earliest beginnings of America's Industrial and Technological Development. Men working their own coal mines. Early 1900s, USA While on a trip to England in 1810, Newburyport merchant Francis Cabot Lowell was allowed to tour the British textile factories, but not take notes. Realising the War of 1812 had ruined his import business but that a market for domestic finished cloth was emerging in America, he memorised the design of textile machines, and on his return to the United States, he set up the Boston Manufacturing Company. Lowell and his partners built America's second cotton-to-cloth textile mill at Waltham, Massachusetts, second to the Beverly Cotton Manufactory After his death in 1817, his associates built America's first planned factory town, which they named after him. This enterprise was capitalised in a public stock offering, one of the first uses of it in the United States. Lowell, Massachusetts, utilising 5.6 miles (9.0 km) of canals and ten thousand horsepower delivered by the Merrimack River, is considered by some to be a major contributor to the success of the American Industrial Revolution. The short-lived utopia-like Lowell System was formed, as a direct response to the poor working conditions in Britain. However, by 1850, especially following the Irish Potato Famine, the system had been replaced by poor immigrant labour. The industrialisation of the watch industry started 1854 also in Waltham, Massachusetts, at the Waltham Watch Company, with the development of machine tools, tools, gauges and assembling methods adapted to the micro precision required for watches. Japan Main articles: Meiji Restoration and Economic history of Japan The industrial revolution began about 1870 as Meiji period leaders decided to catch up with the West. The government built railroads, improved roads, and inaugurated a land reform program to prepare the country for further development. It inaugurated a new Western-based education system for all young people, sent thousands of students to the United States and Europe, and hired more than 3,000 Westerners to teach modern science, mathematics, technology, and foreign languages in Japan (O-yatoi gaikokujin). In 1871 a group of Japanese politicians known as the Iwakura Mission toured Europe and the USA to learn western ways. The result was a deliberate state led industrialisation policy to enable Japan to quickly catch up. The Bank of Japan, founded in 1877, used taxes to fund model steel and textile factories. Education was expanded and Japanese students were sent to study in the west. Modern industry first appeared in textiles, including cotton and especially silk, which was based in home workshops in rural areas.[117] |
About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|
GMT+8, 2015-9-11 22:02 , Processed in 0.133659 second(s), 16 queries .