Cognitive science is a large field, and covers a wide array of topics on cognition. However, it should be recognized that cognitive science is not equally concerned with every topic that might bear on the nature and operation of the mind or intelligence. Social and cultural factors, emotion, consciousness, animal cognition, comparative and evolutionary approaches are frequently de-emphasized or excluded outright, often based on key philosophical conflicts. Another important mind-related subject that the cognitive sciences tend to avoid is the existence of qualia, with discussions over this issue being sometimes limited to only mentioning qualia as a philosophically open matter. Some within the cognitive science community, however, consider these to be vital topics, and advocate the importance of investigating them.[6] Below are some of the main topics that cognitive science is concerned with. This is not an exhaustive list, but is meant to cover the wide range of intelligent behaviors. See List of cognitive science topics for a list of various aspects of the field. Artificial intelligence__Main article: Artificial intelligence "... One major contribution of AI and cognitive science to psychology has been the information processing model of human thinking in which the metaphor of brain-as-computer is taken quite literally. ." AAAI Web pages. Artificial intelligence (AI) involves the study of cognitive phenomena in machines. One of the practical goals of AI is to implement aspects of human intelligence in computers. Computers are also widely used as a tool with which to study cognitive phenomena. Computational modeling uses simulations to study how human intelligence may be structured.[7] (See the section on computational modeling in the Research Methods section.) There is some debate in the field as to whether the mind is best viewed as a huge array of small but individually feeble elements (i.e. neurons), or as a collection of higher-level structures such as symbols, schemas, plans, and rules. The former view uses connectionism to study the mind, whereas the latter emphasizes symbolic computations. One way to view the issue is whether it is possible to accurately simulate a human brain on a computer without accurately simulating the neurons that make up the human brain. Attention__Main article: Attention Attention is the selection of important information. The human mind is bombarded with millions of stimuli and it must have a way of deciding which of this information to process. Attention is sometimes seen as a spotlight, meaning one can only shine the light on a particular set of information. Experiments that support this metaphor include the dichotic listening task (Cherry, 1957) and studies of inattentional blindness (Mack and Rock, 1998). In the dichotic listening task, subjects are bombarded with two different messages, one in each ear, and told to focus on only one of the messages. At the end of the experiment, when asked about the content of the unattended message, subjects cannot report it. Knowledge and processing of language__ A well known example of a Phrase structure tree. This is one way of representing human language that shows how different components are organized hierarchically.Main articles: Theoretical linguistics, Cognitive linguistics, Language, Linguistics, and Psycholinguistics The ability to learn and understand language is an extremely complex process. Language is acquired within the first few years of life, and all humans under normal circumstances are able to acquire language proficiently. A major driving force in the theoretical linguistic field is discovering the nature that language must have in the abstract in order to be learned in such a fashion. Some of the driving research questions in studying how the brain itself processes language include: (1) To what extent is linguistic knowledge innate or learned?, (2) Why is it more difficult for adults to acquire a second-language than it is for infants to acquire their first-language?, and (3) How are humans able to understand novel sentences? The study of language processing ranges from the investigation of the sound patterns of speech to the meaning of words and whole sentences. Linguistics often divides language processing into orthography, phonology and phonetics, morphology, syntax, semantics, and pragmatics. Many aspects of language can be studied from each of these components and from their interaction. The study of language processing in cognitive science is closely tied to the field of linguistics. Linguistics was traditionally studied as a part of the humanities, including studies of history, art and literature. In the last fifty years or so, more and more researchers have studied knowledge and use of language as a cognitive phenomenon, the main problems being how knowledge of language can be acquired and used, and what precisely it consists of.[8] Linguists have found that, while humans form sentences in ways apparently governed by very complex systems, they are remarkably unaware of the rules that govern their own speech. Thus linguists must resort to indirect methods to determine what those rules might be, if indeed rules as such exist. In any event, if speech is indeed governed by rules, they appear to be opaque to any conscious consideration. Learning and development__Main articles: Learning and Developmental psychology Learning and development are the processes by which we acquire knowledge and information over time. Infants are born with little or no knowledge (depending on how knowledge is defined), yet they rapidly acquire the ability to use language, walk, and recognize people and objects. Research in learning and development aims to explain the mechanisms by which these processes might take place. A major question in the study of cognitive development is the extent to which certain abilities are innate or learned. This is often framed in terms of the nature and nurture debate. The nativist view emphasizes that certain features are innate to an organism and are determined by its genetic endowment. The empiricist view, on the other hand, emphasizes that certain abilities are learned from the environment. Although clearly both genetic and environmental input is needed for a child to develop normally, considerable debate remains about how genetic information might guide cognitive development. In the area of language acquisition, for example, some (such as Steven Pinker)[9] have argued that specific information containing universal grammatical rules must be contained in the genes, whereas others (such as Jeffrey Elman and colleagues in Rethinking Innateness) have argued that Pinker's claims are biologically unrealistic. They argue that genes determine the architecture of a learning system, but that specific "facts" about how grammar works can only be learned as a result of experience. Memory__Main article: Memory Memory allows us to store information for later retrieval. Memory is often thought of consisting of both a long-term and short-term store. Long-term memory allows us to store information over prolonged periods (days, weeks, years). We do not yet know the practical limit of long-term memory capacity. Short-term memory allows us to store information over short time scales (seconds or minutes). Memory is also often grouped into declarative and procedural forms. Declarative memory—grouped into subsets of semantic and episodic forms of memory—refers to our memory for facts and specific knowledge, specific meanings, and specific experiences (e.g., Who was the first president of the U.S.A.?, or "What did I eat for breakfast four days ago?). Procedural memory allows us to remember actions and motor sequences (e.g. how to ride a bicycle) and is often dubbed implicit knowledge or memory . Cognitive scientists study memory just as psychologists do, but tend to focus in more on how memory bears on cognitive processes, and the interrelationship between cognition and memory. One example of this could be, what mental processes does a person go through to retrieve a long-lost memory? Or, what differentiates between the cognitive process of recognition (seeing hints of something before remembering it, or memory in context) and recall (retrieving a memory, as in "fill-in-the-blank")? Perception and action__ The Necker cube, an example of an optical illusion An optical illusion. The square A is exactly the same shade of gray as square B. See checker shadow illusion.Main article: Perception Perception is the ability to take in information via the senses, and process it in some way. Vision and hearing are two dominant senses that allow us to perceive the environment. Some questions in the study of visual perception, for example, include: (1) How are we able to recognize objects?, (2) Why do we perceive a continuous visual environment, even though we only see small bits of it at any one time? One tool for studying visual perception is by looking at how people process optical illusions. The image on the right of a Necker cube is an example of a bistable percept, that is, the cube can be interpreted as being oriented in two different directions. The study of haptic (tactile), olfactory, and gustatory stimuli also fall into the domain of perception. Action is taken to refer to the output of a system. In humans, this is accomplished through motor responses. Spatial planning and movement, speech production, and complex motor movements are all aspects of action. |
About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|
GMT+8, 2015-9-11 22:07 , Processed in 0.145013 second(s), 16 queries .