Edgar Codd worked at IBM in San Jose, California, in one of their offshoot offices that was primarily involved in the development of hard disk systems. He was unhappy with the navigational model of the Codasyl approach, notably the lack of a "search" facility. In 1970, he wrote a number of papers that outlined a new approach to database construction that eventually culminated in the groundbreaking A Relational Model of Data for Large Shared Data Banks.[7] In this paper, he described a new system for storing and working with large databases. Instead of records being stored in some sort of linked list of free-form records as in Codasyl, Codd's idea was to use a "table" of fixed-length records, with each table used for a different type of entity. A linked-list system would be very inefficient when storing "sparse" databases where some of the data for any one record could be left empty. The relational model solved this by splitting the data into a series of normalized tables (or relations), with optional elements being moved out of the main table to where they would take up room only if needed. Data may be freely inserted, deleted and edited in these tables, with the DBMS doing whatever maintenance needed to present a table view to the application/user. In the relational model, related records are linked together with a "key" The relational model also allowed the content of the database to evolve without constant rewriting of links and pointers. The relational part comes from entities referencing other entities in what is known as one-to-many relationship, like a traditional hierarchical model, and many-to-many relationship, like a navigational (network) model. Thus, a relational model can express both hierarchical and navigational models, as well as its native tabular model, allowing for pure or combined modeling in terms of these three models, as the application requires. For instance, a common use of a database system is to track information about users, their name, login information, various addresses and phone numbers. In the navigational approach all of these data would be placed in a single record, and unused items would simply not be placed in the database. In the relational approach, the data would be normalized into a user table, an address table and a phone number table (for instance). Records would be created in these optional tables only if the address or phone numbers were actually provided. Linking the information back together is the key to this system. In the relational model, some bit of information was used as a "key", uniquely defining a particular record. When information was being collected about a user, information stored in the optional tables would be found by searching for this key. For instance, if the login name of a user is unique, addresses and phone numbers for that user would be recorded with the login name as its key. This simple "re-linking" of related data back into a single collection is something that traditional computer languages are not designed for. Just as the navigational approach would require programs to loop in order to collect records, the relational approach would require loops to collect information about any one record. Codd's solution to the necessary looping was a set-oriented language, a suggestion that would later spawn the ubiquitous SQL. Using a branch of mathematics known as tuple calculus, he demonstrated that such a system could support all the operations of normal databases (inserting, updating etc.) as well as providing a simple system for finding and returning sets of data in a single operation. Codd's paper was picked up by two people at Berkeley, Eugene Wong and Michael Stonebraker. They started a project known as INGRES using funding that had already been allocated for a geographical database project and student programmers to produce code. Beginning in 1973, INGRES delivered its first test products which were generally ready for widespread use in 1979. INGRES was similar to System R in a number of ways, including the use of a "language" for data access, known as QUEL. Over time, INGRES moved to the emerging SQL standard. IBM itself did one test implementation of the relational model, PRTV, and a production one, Business System 12, both now discontinued. Honeywell wrote MRDS for Multics, and now there are two new implementations: Alphora Dataphor and Rel. Most other DBMS implementations usually called relational are actually SQL DBMSs. In 1970, the University of Michigan began development of the MICRO Information Management System[8] based on D.L. Childs' Set-Theoretic Data model.[9][10][11] Micro was used to manage very large data sets by the US Department of Labor, the U.S. Environmental Protection Agency, and researchers from the University of Alberta, the University of Michigan, and Wayne State University. It ran on IBM mainframe computers using the Michigan Terminal System.[12] The system remained in production until 1998. |
About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|
GMT+8, 2015-9-11 22:17 , Processed in 0.147267 second(s), 16 queries .