搜索
热搜: music
门户 People Person Consciousness view content

Scientific study

2014-3-30 11:33| view publisher: amanda| views: 1002| wiki(57883.com) 0 : 0

description: For many decades, consciousness as a research topic was avoided by the majority of mainstream scientists, because of a general feeling that a phenomenon defined in subjective terms could not properly ...
For many decades, consciousness as a research topic was avoided by the majority of mainstream scientists, because of a general feeling that a phenomenon defined in subjective terms could not properly be studied using objective experimental methods.[62] In 1975 George Mandler published an influential psychological study which distinguished between slow, serial, and limited conscious processes and fast, parallel and extensive unconscious ones.[63] Starting in the 1980s, an expanding community of neuroscientists and psychologists have associated themselves with a field called Consciousness Studies, giving rise to a stream of experimental work published in books,[64] journals such as Consciousness and Cognition, and methodological work published in journals such as the Journal of Consciousness Studies, along with regular conferences organized by groups such as the Association for the Scientific Study of Consciousness.[65]

Modern medical and psychological investigations into consciousness are based on psychological experiments (including, for example, the investigation of priming effects using subliminal stimuli), and on case studies of alterations in consciousness produced by trauma, illness, or drugs. Broadly viewed, scientific approaches are based on two core concepts. The first identifies the content of consciousness with the experiences that are reported by human subjects; the second makes use of the concept of consciousness that has been developed by neurologists and other medical professionals who deal with patients whose behavior is impaired. In either case, the ultimate goals are to develop techniques for assessing consciousness objectively in humans as well as other animals, and to understand the neural and psychological mechanisms that underlie it.[35]

Measurement


The Necker cube, an ambiguous image
Experimental research on consciousness presents special difficulties, due to the lack of a universally accepted operational definition. In the majority of experiments that are specifically about consciousness, the subjects are human, and the criterion that is used is verbal report: in other words, subjects are asked to describe their experiences, and their descriptions are treated as observations of the contents of consciousness.[66] For example, subjects who stare continuously at a Necker cube usually report that they experience it "flipping" between two 3D configurations, even though the stimulus itself remains the same.[67] The objective is to understand the relationship between the conscious awareness of stimuli (as indicated by verbal report) and the effects the stimuli have on brain activity and behavior. In several paradigms, such as the technique of response priming, the behavior of subjects is clearly influenced by stimuli for which they report no awareness.[68]

Verbal report is widely considered to be the most reliable indicator of consciousness, but it raises a number of issues.[69] For one thing, if verbal reports are treated as observations, akin to observations in other branches of science, then the possibility arises that they may contain errors—but it is difficult to make sense of the idea that subjects could be wrong about their own experiences, and even more difficult to see how such an error could be detected.[70] Daniel Dennett has argued for an approach he calls heterophenomenology, which means treating verbal reports as stories that may or may not be true, but his ideas about how to do this have not been widely adopted.[71] Another issue with verbal report as a criterion is that it restricts the field of study to humans who have language: this approach cannot be used to study consciousness in other species, pre-linguistic children, or people with types of brain damage that impair language. As a third issue, philosophers who dispute the validity of the Turing test may feel that it is possible, at least in principle, for verbal report to be dissociated from consciousness entirely: a philosophical zombie may give detailed verbal reports of awareness in the absence of any genuine awareness.[72]

Although verbal report is in practice the "gold standard" for ascribing consciousness, it is not the only possible criterion.[69] In medicine, consciousness is assessed as a combination of verbal behavior, arousal, brain activity and purposeful movement. The last three of these can be used as indicators of consciousness when verbal behavior is absent.[73] The scientific literature regarding the neural bases of arousal and purposeful movement is very extensive. Their reliability as indicators of consciousness is disputed, however, due to numerous studies showing that alert human subjects can be induced to behave purposefully in a variety of ways in spite of reporting a complete lack of awareness.[68] Studies of the neuroscience of free will have also shown that the experiences that people report when they behave purposefully sometimes do not correspond to their actual behaviors or to the patterns of electrical activity recorded from their brains.[74]

Another approach applies specifically to the study of self-awareness, that is, the ability to distinguish oneself from others. In the 1970s Gordon Gallup developed an operational test for self-awareness, known as the mirror test. The test examines whether animals are able to differentiate between seeing themselves in a mirror versus seeing other animals. The classic example involves placing a spot of coloring on the skin or fur near the individual's forehead and seeing if they attempt to remove it or at least touch the spot, thus indicating that they recognize that the individual they are seeing in the mirror is themselves.[75] Humans (older than 18 months) and other great apes, bottlenose dolphins, pigeons, and elephants have all been observed to pass this test.[76]

Neural correlates


Schema of the neural processes underlying consciousness, from Christof Koch
A major part of the scientific literature on consciousness consists of studies that examine the relationship between the experiences reported by subjects and the activity that simultaneously takes place in their brains—that is, studies of the neural correlates of consciousness. The hope is to find that activity in a particular part of the brain, or a particular pattern of global brain activity, will be strongly predictive of conscious awareness. Several brain imaging techniques, such as EEG and fMRI, have been used for physical measures of brain activity in these studies.[77]

One idea that has drawn attention for several decades is that consciousness is associated with high-frequency (gamma band) oscillations in brain activity. This idea arose from proposals in the 1980s, by Christof von der Malsburg and Wolf Singer, that gamma oscillations could solve the so-called binding problem, by linking information represented in different parts of the brain into a unified experience.[78] Rodolfo Llinás, for example, proposed that consciousness results from recurrent thalamo-cortical resonance where the specific thalamocortical systems (content) and the non-specific (centromedial thalamus) thalamocortical systems (context) interact in the gamma band frequency via synchronous oscillations.[79]

A number of studies have shown that activity in primary sensory areas of the brain is not sufficient to produce consciousness: it is possible for subjects to report a lack of awareness even when areas such as the primary visual cortex show clear electrical responses to a stimulus.[80] Higher brain areas are seen as more promising, especially the prefrontal cortex, which is involved in a range of higher cognitive functions collectively known as executive functions. There is substantial evidence that a "top-down" flow of neural activity (i.e., activity propagating from the frontal cortex to sensory areas) is more predictive of conscious awareness than a "bottom-up" flow of activity.[81] The prefrontal cortex is not the only candidate area, however: studies by Nikos Logothetis and his colleagues have shown, for example, that visually responsive neurons in parts of the temporal lobe reflect the visual perception in the situation when conflicting visual images are presented to different eyes (i.e., bistable percepts during binocular rivalry).[82]

In 2011 Graziano and Kastner[83] proposed the "attention schema" theory of awareness. In that theory specific cortical machinery, notably in the superior temporal sulcus and the temporo-parietal junction, is used to build the construct of awareness and attribute it to other people. The same cortical machinery is also used to attribute awareness to oneself. Damage to this cortical machinery can lead to deficits in consciousness such as hemispatial neglect. In the attention schema theory, the value of constructing the feature of awareness and attributing it to a person is to gain a useful predictive model of that person's attentional processing. Attention is a style of information processing in which a brain focuses its resources on a limited set of interrelated signals. Awareness, in this theory, is a useful, simplified schema that represents attentional state. To be aware of X is to construct a model of one's attentional focus on X.

Biological function and evolution
Regarding the primary function of conscious processing, a recurring idea in recent theories is that phenomenal states somehow integrate neural activities and information-processing that would otherwise be independent.[84] This has been called the integration consensus. Another example has been proposed by Gerald Edelman called dynamic core hypothesis which puts emphasis on reentrant connections that reciprocally link areas of the brain in a massively parallel manner.[85] These theories of integrative function present solutions to two classic problems associated with consciousness: differentiation and unity. They show how our conscious experience can discriminate between a virtually unlimited number of different possible scenes and details (differentiation) because it integrates those details from our sensory systems, while the integrative nature of consciousness in this view easily explains how our experience can seem unified as one whole despite all of these individual parts. However, it remains unspecified which kinds of information are integrated in a conscious manner and which kinds can be integrated without consciousness. Nor is it explained what specific causal role conscious integration plays, nor why the same functionality cannot be achieved without consciousness. Obviously not all kinds of information are capable of being disseminated consciously (e.g., neural activity related to vegetative functions, reflexes, unconscious motor programs, low-level perceptual analyses, etc.) and many kinds of information can be disseminated and combined with other kinds without consciousness, as in intersensory interactions such as the ventriloquism effect.[86] Hence it remains unclear why any of it is conscious. For a review of the differences between conscious and unconscious integrations, see the article of E. Morsella.[86]

As noted earlier, even among writers who consider consciousness to be a well-defined thing, there is widespread dispute about which animals other than humans can be said to possess it.[87] Thus, any examination of the evolution of consciousness is faced with great difficulties. Nevertheless, some writers have argued that consciousness can be viewed from the standpoint of evolutionary biology as an adaptation in the sense of a trait that increases fitness.[88] In his article "Evolution of consciousness", John Eccles argued that special anatomical and physical properties of the mammalian cerebral cortex gave rise to consciousness.[89] Bernard Baars proposed that once in place, this "recursive" circuitry may have provided a basis for the subsequent development of many of the functions that consciousness facilitates in higher organisms.[90] Peter Carruthers has put forth one such potential adaptive advantage gained by conscious creatures by suggesting that consciousness allows an individual to make distinctions between appearance and reality.[91] This ability would enable a creature to recognize the likelihood that their perceptions are deceiving them (e.g. that water in the distance may be a mirage) and behave accordingly, and it could also facilitate the manipulation of others by recognizing how things appear to them for both cooperative and devious ends.

Other philosophers, however, have suggested that consciousness would not be necessary for any functional advantage in evolutionary processes.[92][93] No one has given a causal explanation, they argue, of why it would not be possible for a functionally equivalent non-conscious organism (i.e., a philosophical zombie) to achieve the very same survival advantages as a conscious organism. If evolutionary processes are blind to the difference between function F being performed by conscious organism O and non-conscious organism O*, it is unclear what adaptive advantage consciousness could provide.[94] As a result, an exaptive explanation of consciousness has gained favor with some theorists that posit consciousness did not evolve as an adaptation but was an exaptation arising as a consequence of other developments such as increases in brain size or cortical rearrangement.[95][96] Others, still, argue about all these theories.[97]

States of consciousness


A Buddhist monk meditating
There are some states in which consciousness seems to be abolished, including sleep, coma, and death. There are also a variety of circumstances that can change the relationship between the mind and the world in less drastic ways, producing what are known as altered states of consciousness. Some altered states occur naturally; others can be produced by drugs or brain damage.[98] Altered states can be accompanied by changes in thinking, disturbances in the sense of time, feelings of loss of control, changes in emotional expression, alternations in body image and changes in meaning or significance.[99]

The two most widely accepted altered states are sleep and dreaming. Although dream sleep and non-dream sleep appear very similar to an outside observer, each is associated with a distinct pattern of brain activity, metabolic activity, and eye movement; each is also associated with a distinct pattern of experience and cognition. During ordinary non-dream sleep, people who are awakened report only vague and sketchy thoughts, and their experiences do not cohere into a continuous narrative. During dream sleep, in contrast, people who are awakened report rich and detailed experiences in which events form a continuous progression, which may however be interrupted by bizarre or fantastic intrusions. Thought processes during the dream state frequently show a high level of irrationality. Both dream and non-dream states are associated with severe disruption of memory: it usually disappears in seconds during the non-dream state, and in minutes after awakening from a dream unless actively refreshed.[100]

A variety of psychoactive drugs and alcohol have notable effects on consciousness.[101] These range from a simple dulling of awareness produced by sedatives, to increases in the intensity of sensory qualities produced by stimulants, cannabis, or most notably by the class of drugs known as psychedelics.[98] LSD, mescaline, psilocybin, and others in this group can produce major distortions of perception, including hallucinations; some users even describe their drug-induced experiences as mystical or spiritual in quality. The brain mechanisms underlying these effects are not as well understood as alcoholism,[101] but there is substantial evidence that alterations in the brain system that uses the chemical neurotransmitter serotonin play an essential role.[102]

There has been some research into physiological changes in yogis and people who practise various techniques of meditation. Some research with brain waves during meditation has reported differences between those corresponding to ordinary relaxation and those corresponding to meditation. It has been disputed, however, whether there is enough evidence to count these as physiologically distinct states of consciousness.[103]

The most extensive study of the characteristics of altered states of consciousness was made by psychologist Charles Tart in the 1960s and 1970s. Tart analyzed a state of consciousness as made up of a number of component processes, including exteroception (sensing the external world); interoception (sensing the body); input-processing (seeing meaning); emotions; memory; time sense; sense of identity; evaluation and cognitive processing; motor output; and interaction with the environment.[104] Each of these, in his view, could be altered in multiple ways by drugs or other manipulations. The components that Tart identified have not, however, been validated by empirical studies. Research in this area has not yet reached firm conclusions, but a recent questionnaire-based study identified eleven significant factors contributing to drug-induced states of consciousness: experience of unity; spiritual experience; blissful state; insightfulness; disembodiment; impaired control and cognition; anxiety; complex imagery; elementary imagery; audio-visual synesthesia; and changed meaning of percepts.[105]

Phenomenology
Phenomenology is a method of inquiry that attempts to examine the structure of consciousness in its own right, putting aside problems regarding the relationship of consciousness to the physical world. This approach was first proposed by the philosopher Edmund Husserl, and later elaborated by other philosophers and scientists.[106] Husserl's original concept gave rise to two distinct lines of inquiry, in philosophy and psychology. In philosophy, phenomenology has largely been devoted to fundamental metaphysical questions, such as the nature of intentionality ("aboutness"). In psychology, phenomenology largely has meant attempting to investigate consciousness using the method of introspection, which means looking into one's own mind and reporting what one observes. This method fell into disrepute in the early twentieth century because of grave doubts about its reliability, but has been rehabilitated to some degree, especially when used in combination with techniques for examining brain activity.[107]



Neon color spreading effect. The apparent bluish tinge of the white areas inside the circle is an illusion.


Square version of the neon spread illusion
Introspectively, the world of conscious experience seems to have considerable structure. Immanuel Kant asserted that the world as we perceive it is organized according to a set of fundamental "intuitions", which include object (we perceive the world as a set of distinct things); shape; quality (color, warmth, etc.); space (distance, direction, and location); and time.[108] Some of these constructs, such as space and time, correspond to the way the world is structured by the laws of physics; for others the correspondence is not as clear. Understanding the physical basis of qualities, such as redness or pain, has been particularly challenging. David Chalmers has called this the hard problem of consciousness.[25] Some philosophers have argued that it is intrinsically unsolvable, because qualities ("qualia") are ineffable; that is, they are "raw feels", incapable of being analyzed into component processes.[109] Most psychologists and neuroscientists reject these arguments — nevertheless it is clear that the relationship between a physical entity such as light and a perceptual quality such as color is extraordinarily complex and indirect, as demonstrated by a variety of optical illusions such as neon color spreading.[110]

In neuroscience, a great deal of effort has gone into investigating how the perceived world of conscious awareness is constructed inside the brain. The process is generally thought to involve two primary mechanisms: (1) hierarchical processing of sensory inputs, and (2) memory. Signals arising from sensory organs are transmitted to the brain and then processed in a series of stages, which extract multiple types of information from the raw input. In the visual system, for example, sensory signals from the eyes are transmitted to the thalamus and then to the primary visual cortex; inside the cerebral cortex they are sent to areas that extract features such as three-dimensional structure, shape, color, and motion.[111] Memory comes into play in at least two ways. First, it allows sensory information to be evaluated in the context of previous experience. Second, and even more importantly, working memory allows information to be integrated over time so that it can generate a stable representation of the world—Gerald Edelman expressed this point vividly by titling one of his books about consciousness The Remembered Present.[112]

Despite the large amount of information available, the most important aspects of perception remain mysterious. A great deal is known about low-level signal processing in sensory systems, but the ways by which sensory systems interact with each other, with "executive" systems in the frontal cortex, and with the language system are very incompletely understood. At a deeper level, there are still basic conceptual issues that remain unresolved.[111] Many scientists have found it difficult to reconcile the fact that information is distributed across multiple brain areas with the apparent unity of consciousness: this is one aspect of the so-called binding problem.[113] There are also some scientists who have expressed grave reservations about the idea that the brain forms representations of the outside world at all: influential members of this group include psychologist J. J. Gibson and roboticist Rodney Brooks, who both argued in favor of "intelligence without representation".[114]

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 21:55 , Processed in 0.132589 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部