Planetary habitability Main article: Planetary habitability When looking for life on other planets like the earth, some simplifying assumptions are useful to reduce the size of the task of the astrobiologist. One is to assume that the vast majority of life forms in our galaxy are based on carbon chemistries, as are all life forms on Earth.[40] Carbon is well known for the unusually wide variety of molecules that can be formed around it. Carbon is the fourth most abundant element in the universe and the energy required to make or break a bond is just at an appropriate level for building molecules which are not only stable, but also reactive. The fact that carbon atoms bond readily to other carbon atoms allows for the building of arbitrarily long and complex molecules. The presence of liquid water is a useful assumption, as it is a common molecule and provides an excellent environment for the formation of complicated carbon-based molecules that could eventually lead to the emergence of life.[41] Some researchers posit environments of ammonia, or more likely, water-ammonia mixtures.[42] A third assumption is to focus on sun-like stars. This comes from the idea of planetary habitability.[43] Very big stars have relatively short lifetimes, meaning that life would not likely have time to evolve on planets orbiting them. Very small stars provide so little heat and warmth that only planets in very close orbits around them would not be frozen solid, and in such close orbits these planets would be tidally "locked" to the star.[44] Without a thick atmosphere, one side of the planet would be perpetually baked and the other perpetually frozen. In 2005, the question was brought back to the attention of the scientific community, as the long lifetimes of red dwarfs could allow some biology on planets with thick atmospheres. This is significant, as red dwarfs are extremely common. (See Habitability of red dwarf systems). It is estimated that 10% of the stars in our galaxy are sun-like; there are about a thousand such stars within 100 light-years of our Sun. These stars would be useful primary targets for interstellar listening. Since Earth is the only planet known to harbor life, there is no evident way to know if any of the simplifying assumptions are correct. Communication attempts Main article: Communication with extraterrestrial intelligence The illustration on the Pioneer plaque Research on communication with extraterrestrial intelligence (CETI) focuses on composing and deciphering messages that could theoretically be understood by another technological civilization. Communication attempts by humans have included broadcasting mathematical languages, pictorial systems such as the Arecibo message and computational approaches to detecting and deciphering 'natural' language communication. The SETI program, for example, uses both radio telescopes and optical telescopes to search for deliberate signals from extraterrestrial intelligence. While some high-profile scientists, such as Carl Sagan, have advocated the transmission of messages,[45][46] scientist Stephen Hawking has warned against it, suggesting that aliens might simply raid Earth for its resources and then move on.[47] Elements of astrobiology Astronomy Main article: Astronomy Artist's impression of the extrasolar planet OGLE-2005-BLG-390Lb orbiting its star 20,000 light-years from Earth; this planet was discovered with gravitational microlensing. The NASA Kepler mission, launched in March 2009, searches for extrasolar planets. Most astronomy-related astrobiological research falls into the category of extrasolar planet (exoplanet) detection, the hypothesis being that if life arose on Earth, then it could also arise on other planets with similar characteristics. To that end, a number of instruments designed to detect Earth-sized exoplanets have been considered, most notably NASA's Terrestrial Planet Finder (TPF) and ESA's Darwin programs, both of which have been cancelled. Additionally, NASA has launched the Kepler mission in March 2009, and the French Space Agency has launched the COROT space mission in 2006.[48][49] There are also several less ambitious ground-based efforts underway. (See exoplanet). The goal of these missions is not only to detect Earth-sized planets, but also to directly detect light from the planet so that it may be studied spectroscopically. By examining planetary spectra, it would be possible to determine the basic composition of an extrasolar planet's atmosphere and/or surface; given this knowledge, it may be possible to assess the likelihood of life being found on that planet. A NASA research group, the Virtual Planet Laboratory,[50] is using computer modeling to generate a wide variety of virtual planets to see what they would look like if viewed by TPF or Darwin. It is hoped that once these missions come online, their spectra can be cross-checked with these virtual planetary spectra for features that might indicate the presence of life. The photometry temporal variability of extrasolar planets may also provide clues to their surface and atmospheric properties. An estimate for the number of planets with intelligent extraterrestrial life can be gleaned from the Drake equation, essentially an equation expressing the probability of intelligent life as the product of factors such as the fraction of planets that might be habitable and the fraction of planets on which life might arise:[51] N = R^{*} ~ \times ~ f_{p} ~ \times ~ n_{e} ~ \times ~ f_{l} ~ \times ~ f_{i} ~ \times ~ f_{c} ~ \times ~ L where, N = The number of communicative civilizations, R* = The rate of formation of suitable stars (stars such as our Sun), fp = The fraction of those stars with planets. (Current evidence indicates that planetary systems may be common for stars like the Sun), ne = The number of Earth-sized worlds per planetary system, fl = The fraction of those Earth-sized planets where life actually develops, fi = The fraction of life sites where intelligence develops, fc = The fraction of communicative planets (those on which electromagnetic communications technology develops), L = The "lifetime" of communicating civilizations. However, whilst the rationale behind the equation is sound, it is unlikely that the equation will be constrained to reasonable error limits any time soon. The first term, Number of Stars, is generally constrained within a few orders of magnitude. The second and third terms, Stars with Planets and Planets with Habitable Conditions, are being evaluated for the sun's neighborhood. The problem of the formula is that it is not usable to emit hypothesis because it contains units that can never be verified. Drake originally formulated the equation merely as an agenda for discussion at the Green Bank conference,[52] but some applications of the formula had been taken literally and related to simplistic or pseudoscientific arguments.[53] Another associated topic is the Fermi paradox, which suggests that if intelligent life is common in the universe, then there should be obvious signs of it. This is the purpose of projects like SETI, which tries to detect signs of radio transmissions from intelligent extraterrestrial civilizations. Another active research area in astrobiology is planetary system formation. It has been suggested that the peculiarities of our Solar System (for example, the presence of Jupiter as a protective shield)[54] may have greatly increased the probability of intelligent life arising on our planet.[55][56] No firm conclusions have been reached so far. Biology See also: Abiogenesis, Biology, Extremophile, and List of interstellar and circumstellar molecules Hydrothermal vents are able to support extremophile bacteria on Earth and may also support life in other parts of the cosmos. Biology and chemistry, as opposed to physics, do not admit ideological contexts: either the biological phenomena are real, or they are abstract. Biologists cannot say that a process or phenomenon, by being mathematically possible, have to exist forcibly in the real nature. For biologists, the ground of speculations is well noticeable, and biologists specify what is speculative and what is not.[53] Until the 1970s, life was believed to be entirely dependent on energy from the Sun. Plants on Earth's surface capture energy from sunlight to photosynthesize sugars from carbon dioxide and water, releasing oxygen in the process, and are then eaten by oxygen-respiring animals, passing their energy up the food chain. Even life in the ocean depths, where sunlight cannot reach, was believed to obtain its nourishment either from consuming organic detritus rained down from the surface waters or from eating animals that did.[57] A world's ability to support life was thought to depend on its access to sunlight. However, in 1977, during an exploratory dive to the Galapagos Rift in the deep-sea exploration submersible Alvin, scientists discovered colonies of giant tube worms, clams, crustaceans, mussels, and other assorted creatures clustered around undersea volcanic features known as black smokers.[57] These creatures thrive despite having no access to sunlight, and it was soon discovered that they comprise an entirely independent food chain. Instead of plants, the basis for this food chain is a form of bacterium that derives its energy from oxidization of reactive chemicals, such as hydrogen or hydrogen sulfide, that bubble up from the Earth's interior. This chemosynthesis revolutionized the study of biology by revealing that life need not be sun-dependent; it only requires water and an energy gradient in order to exist. Extremophiles (organisms able to survive in extreme environments) are a core research element for astrobiologists. Such organisms include biota which are able to survive several kilometers below the ocean's surface near hydrothermal vents and microbes that thrive in highly acidic environments.[58] It is now known that extremophiles thrive in ice, boiling water, acid, the water core of nuclear reactors, salt crystals, toxic waste and in a range of other extreme habitats that were previously thought to be inhospitable for life.[59] It opened up a new avenue in astrobiology by massively expanding the number of possible extraterrestrial habitats. Characterization of these organisms—their environments and their evolutionary pathways—is considered a crucial component to understanding how life might evolve elsewhere in the universe. According to astrophysicist Dr. Steinn Sigurdsson, "There are viable bacterial spores that have been found that are 40 million years old on Earth - and we know they're very hardened to radiation."[60] Some organisms able to withstand exposure to the vacuum and radiation of space include the lichen fungi Rhizocarpon geographicum and Xanthoria elegans,[61] the bacterium Bacillus safensis,[62] Deinococcus radiodurans,[62] Bacillus subtilis,[62] yeast Saccharomyces cerevisiae,[62] seeds from Arabidopsis thaliana ('mouse-ear cress'),[62] as well as the invertebrate animal Tardigrade.[62] On 29 April 2013, French scientists, funded by NASA, reported that, during spaceflight, microbes (like Pseudomonas aeruginosa) seem to adapt to the space environment in ways "not observed on Earth" and can increase in "virulence".[63] On 27 June 2011, it was reported that a new E. coli bacterium was produced from an engineered DNA in which approximately 90% of its thymine was replaced with the synthetic building block 5-chlorouracil, a substance "toxic to other organisms".[64][65] Jupiter's moon, Europa,[59][66][67][68][69][70] and Saturn's moon, Enceladus,[71][72] are now considered the most likely locations for extant extraterrestrial life in the solar system. The origin of life, known as abiogenesis, distinct from the evolution of life, is another ongoing field of research. Oparin and Haldane postulated that the conditions on the early Earth were conducive to the formation of organic compounds from inorganic elements and thus to the formation of many of the chemicals common to all forms of life we see today. The study of this process, known as prebiotic chemistry, has made some progress, but it is still unclear whether or not life could have formed in such a manner on Earth. The alternative hypothesis of panspermia is that the first elements of life may have formed on another planet with even more favorable conditions (or even in interstellar space, asteroids, etc.) and then have been carried over to Earth by a variety of means. Somewhat related to such a hypothesis, NIH scientists reported studies that life began 9.7±2.5 billion years ago, billions of years before the Earth was formed, based on extrapolating the "genetic complexity of organisms" [from "major phylogenetic lineages"] to earlier times.[73][74] (also see Abiogenesis#Coenzyme world) In October 2011, scientists found that the cosmic dust permeating the universe contains complex organic matter ("amorphous organic solids with a mixed aromatic-aliphatic structure") that could be created naturally, and rapidly, by stars.[75][76][77] As one of the scientists noted, "Coal and kerogen are products of life and it took a long time for them to form ... How do stars make such complicated organics under seemingly unfavorable conditions and [do] it so rapidly?"[75] Further, the scientist suggested that these compounds may have been related to the development of life on earth and said that, "If this is the case, life on Earth may have had an easier time getting started as these organics can serve as basic ingredients for life."[75] In September 2012, NASA scientists reported that polycyclic aromatic hydrocarbons (PAHs), subjected to interstellar medium (ISM) conditions, are transformed, through hydrogenation, oxygenation and hydroxylation, to more complex organics - "a step along the path toward amino acids and nucleotides, the raw materials of proteins and DNA, respectively".[78][79] Further, as a result of these transformations, the PAHs lose their spectroscopic signature which could be one of the reasons "for the lack of PAH detection in interstellar ice grains, particularly the outer regions of cold, dense clouds or the upper molecular layers of protoplanetary disks."[78][79] On August 29, 2012, and in a world first, astronomers at Copenhagen University reported the detection of a specific sugar molecule, glycolaldehyde, in a distant star system. The molecule was found around the protostellar binary IRAS 16293-2422, which is located 400 light years from Earth.[80][81] Glycolaldehyde is needed to form ribonucleic acid, or RNA, which is similar in function to DNA. This finding suggests that complex organic molecules may form in stellar systems prior to the formation of planets, eventually arriving on young planets early in their formation.[82] On February 21, 2014, NASA announced a greatly upgraded database for tracking polycyclic aromatic hydrocarbons (PAHs) in the universe. According to scientists, more than 20% of the carbon in the universe may be associated with PAHs, possible starting materials for the formation of life. PAHs seem to have been formed shortly after the Big Bang, are widespread throughout the universe, and are associated with new stars and exoplanets.[83] Astroecology Main article: Astroecology Astroecology concerns the interactions of life with space environments and resources, in planets, asteroids and comets. On a larger scale, astroecology concerns resources for life about stars in the galaxy through the cosmological future. Astroecology attempts to quantify future life in space, addressing this area of astrobiology. Experimental astroecology investigates resources in planetary soils, using actual space materials in meteorites.[84] The results suggest that Martian and carbonaceous chondrite materials can support bacteria, algae and plant (asparagus, potato) cultures, with high soil fertilities. The results support that life could have survived in early aqueous asteroids and on similar materials imported to Earth by dust, comets and meteorites, and that such asteroid materials can be used as soil for future space colonies.[84][85] On the largest scale, cosmoecology concerns life in the universe over cosmological times. The main sources of energy may be red giant stars and white and red dwarf stars, sustaining life for 1020 years.[84][84][86] Astroecologists suggest that their mathematical models may quantify the immense potential amounts of future life in space, allowing a comparable expansion in biodiversity, potentially leading to diverse intelligent life-forms.[87] Astrogeology Main article: Geology of solar terrestrial planets Astrogeology is a planetary science discipline concerned with the geology of the celestial bodies such as the planets and their moons, asteroids, comets, and meteorites. The information gathered by this discipline allows the measure of a planet's or a natural satellite's potential to develop and sustain life, or planetary habitability. An additional discipline of astrogeology is geochemistry, which involves study of the chemical composition of the Earth and other planets, chemical processes and reactions that govern the composition of rocks and soils, the cycles of matter and energy and their interaction with the hydrosphere and the atmosphere of the planet. Specializations include cosmochemistry, biochemistry and organic geochemistry. The fossil record provides the oldest known evidence for life on Earth.[88] By examining the fossil evidence, paleontologists are able to better understand the types of organisms that arose on the early Earth. Some regions on Earth, such as the Pilbara in Western Australia and the McMurdo Dry Valleys of Antarctica, are also considered to be geological analogs to regions of Mars, and as such, might be able to provide clues on how to search for past life on Mars. Consistent with the above, the earliest evidence for life on Earth are graphite found to be biogenic in 3.7 billion-year-old metasedimentary rocks discovered in Western Greenland[89] and microbial mat fossils found in 3.48 billion-year-old sandstone discovered in Western Australia.[90][91] |
About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|
GMT+8, 2015-9-11 21:59 , Processed in 0.122017 second(s), 16 queries .