搜索
热搜: music
门户 Mathematics Mathematics Mathematics education view content

Research

2014-3-24 20:55| view publisher: amanda| views: 1003| wiki(57883.com) 0 : 0

description: "Robust, useful theories of classroom teaching do not yet exist". However, there are useful theories on how children learn mathematics and much research has been conducted in recent decades to explore ...
"Robust, useful theories of classroom teaching do not yet exist".[2] However, there are useful theories on how children learn mathematics and much research has been conducted in recent decades to explore how these theories can be applied to teaching. The following results are examples of some of the current findings in the field of mathematics education:

Important results[2]
One of the strongest results in recent research is that the most important feature in effective teaching is giving students "opportunity to learn". Teachers can set expectations, time, kinds of tasks, questions, acceptable answers, and type of discussions that will influence students' opportunity to learn. This must involve both skill efficiency and conceptual understanding.
Conceptual understanding[2]
Two of the most important features of teaching in the promotion of conceptual understanding are attending explicitly to concepts and allowing students to struggle with important mathematics. Both of these features have been confirmed through a wide variety of studies. Explicit attention to concepts involves making connections between facts, procedures and ideas. (This is often seen as one of the strong points in mathematics teaching in East Asian countries, where teachers typically devote about half of their time to making connections. At the other extreme is the U.S.A., where essentially no connections are made in school classrooms.[3]) These connections can be made through explanation of the meaning of a procedure, questions comparing strategies and solutions of problems, noticing how one problem is a special case of another, reminding students of the main point, discussing how lessons connect, and so on.
Deliberate, productive struggle with mathematical ideas refers to the fact that when students exert effort with important mathematical ideas, even if this struggle initially involves confusion and errors, the end result is greater learning. This has been shown to be true whether the struggle is due to challenging, well-implemented teaching, or due to faulty teaching the students must struggle to make sense of.
Formative assessment[4]
Formative assessment is both the best and cheapest way to boost student achievement, student engagement and teacher professional satisfaction. Results surpass those of reducing class size or increasing teachers' content knowledge. Effective assessment is based on clarifying what students should know, creating appropriate activities to obtain the evidence needed, giving good feedback, encouraging students to take control of their learning and letting students be resources for one another.
Homework[5]
Homework which leads students to practice past lessons or prepare future lessons are more effective than those going over today's lesson. Students benefit from feedback. Students with learning disabilities or low motivation may profit from rewards. For younger children, homework helps simple skills, but not broader measures of achievement.
Students with difficulties[5]
Students with genuine difficulties (unrelated to motivation or past instruction) struggle with basic facts, answer impulsively, struggle with mental representations, have poor number sense and have poor short-term memory. Techniques that have been found productive for helping such students include peer-assisted learning, explicit teaching with visual aids, instruction informed by formative assessment and encouraging students to think aloud.
Algebraic reasoning[5]
It is important for elementary school children to spend a long time learning to express algebraic properties without symbols before learning algebraic notation. When learning symbols, many students believe letters always represent unknowns and struggle with the concept of variable. They prefer arithmetic reasoning to algebraic equations for solving word problems. It takes time to move from arithmetic to algebraic generalizations to describe patterns. Students often have trouble with the minus sign and understand the equals sign to mean "the answer is...."
Methodology
As with other educational research (and the social sciences in general), mathematics education research depends on both quantitative and qualitative studies. Quantitative research includes studies that use inferential statistics to answer specific questions, such as whether a certain teaching method gives significantly better results than the status quo. The best quantitative studies involve randomized trials where students or classes are randomly assigned different methods in order to test their effects. They depend on large samples to obtain statistically significant results.

Qualitative research, such as case studies, action research, discourse analysis, and clinical interviews, depend on small but focused samples in an attempt to understand student learning and to look at how and why a given method gives the results it does. Such studies cannot conclusively establish that one method is better than another, as randomized trials can, but unless it is understood why treatment X is better than treatment Y, application of results of quantitative studies will often lead to "lethal mutations"[2] of the finding in actual classrooms. Exploratory qualitative research is also useful for suggesting new hypotheses, which can eventually be tested by randomized experiments. Both qualitative and quantitative studies therefore are considered essential in education—just as in the other social sciences.[6] Many studies are “mixed”, simultaneously combining aspects of both quantitative and qualitative research, as appropriate.

Controversy
There has been some controversy over the relative strengths of different types of research. Because randomized trials provide clear, objective evidence on “what works”, policy makers often take only those studies into consideration. Some scholars have pushed for more random experiments in which teaching methods are randomly assigned to classes.[7][8] In other disciplines concerned with human subjects, like biomedicine, psychology, and policy evaluation, controlled, randomized experiments remain the preferred method of evaluating treatments.[9][10] Educational statisticians and some mathematics educators have been working to increase the use of randomized experiments to evaluate teaching methods.[8] On the other hand, many scholars in educational schools have argued against increasing the number of randomized experiments, often because of philosophical objections, such as the ethical difficulty of randomly assigning students to various treatments when the effects of such treatments are not yet known.[7] Unlike medical subjects, students have little choice over the teaching method imposed on them, so only a method with solid evidence from other studies can be ethically used as the basis for a randomized trial. Other questions concern the limited knowledge students may have of the experimental treatment they are receiving. Within the broad frame of qualitative research, certain types of research, such as action research, may fall in and out of favor among researchers. Preferences for certain types of research and policy decisions concerning research may vary from country to country.

In the United States, the National Mathematics Advisory Panel (NMAP) published a report in 2008 based on studies, some of which used randomized assignment of treatments to experimental units, such as classrooms or students. The NMAP report's preference for randomized experiments received criticism from some scholars.[11] In 2010, the What Works Clearinghouse (essentially the research arm for the Department of Education) responded to ongoing controversy by extending its research base to include non-experimental studies, including regression discontinuity designs and single-case studies.[12]
up one:Objectivesnext:Standards

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 21:59 , Processed in 0.156881 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部