搜索
热搜: music
门户 Mathematics Mathematics Mathematical analysis view content

Main branches

2014-3-24 20:52| view publisher: amanda| views: 1003| wiki(57883.com) 0 : 0

description: Real analysis Main article: Real analysisReal analysis (traditionally, the theory of functions of a real variable) is a branch of mathematical analysis dealing with the real numbers and real-valued fu ...
Real analysis
Main article: Real analysis
Real analysis (traditionally, the theory of functions of a real variable) is a branch of mathematical analysis dealing with the real numbers and real-valued functions of a real variable.[8][9] In particular, it deals with the analytic properties of real functions and sequences, including convergence and limits of sequences of real numbers, the calculus of the real numbers, and continuity, smoothness and related properties of real-valued functions.

Complex analysis
Main article: Complex analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers.[10] It is useful in many branches of mathematics, including algebraic geometry, number theory, applied mathematics; as well as in physics, including hydrodynamics, thermodynamics, mechanical engineering, electrical engineering, and particularly, quantum field theory.

Complex analysis is particularly concerned with the analytic functions of complex variables (or, more generally, meromorphic functions). Because the separate real and imaginary parts of any analytic function must satisfy Laplace's equation, complex analysis is widely applicable to two-dimensional problems in physics.

Functional analysis
Main article: Functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear operators acting upon these spaces and respecting these structures in a suitable sense.[11][12] The historical roots of functional analysis lie in the study of spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential and integral equations.

Differential equations
Main article: Differential equations
A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and its derivatives of various orders.[13][14][15] Differential equations play a prominent role in engineering, physics, economics, biology, and other disciplines.

Differential equations arise in many areas of science and technology, specifically whenever a deterministic relation involving some continuously varying quantities (modeled by functions) and their rates of change in space and/or time (expressed as derivatives) is known or postulated. This is illustrated in classical mechanics, where the motion of a body is described by its position and velocity as the time value varies. Newton's laws allow one (given the position, velocity, acceleration and various forces acting on the body) to express these variables dynamically as a differential equation for the unknown position of the body as a function of time. In some cases, this differential equation (called an equation of motion) may be solved explicitly.

Measure theory
Main article: Measure (mathematics)
A measure on a set is a systematic way to assign a number to each suitable subset of that set, intuitively interpreted as its size.[16] In this sense, a measure is a generalization of the concepts of length, area, and volume. A particularly important example is the Lebesgue measure on a Euclidean space, which assigns the conventional length, area, and volume of Euclidean geometry to suitable subsets of the n-dimensional Euclidean space \mathbb{R}^n. For instance, the Lebesgue measure of the interval \left[0, 1\right] in the real numbers is its length in the everyday sense of the word – specifically, 1.

Technically, a measure is a function that assigns a non-negative real number or +∞ to (certain) subsets of a set X (see Definition below). It must assign 0 to the empty set and be (countably) additive: the measure of a 'large' subset that can be decomposed into a finite (or countable) number of 'smaller' disjoint subsets, is the sum of the measures of the "smaller" subsets. In general, if one wants to associate a consistent size to each subset of a given set while satisfying the other axioms of a measure, one only finds trivial examples like the counting measure. This problem was resolved by defining measure only on a sub-collection of all subsets; the so-called measurable subsets, which are required to form a \sigma-algebra. This means that countable unions, countable intersections and complements of measurable subsets are measurable. Non-measurable sets in a Euclidean space, on which the Lebesgue measure cannot be defined consistently, are necessarily complicated in the sense of being badly mixed up with their complement. Indeed, their existence is a non-trivial consequence of the axiom of choice.

Numerical analysis
Main article: Numerical analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to general symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics).[17]

Modern numerical analysis does not seek exact answers, because exact answers are often impossible to obtain in practice. Instead, much of numerical analysis is concerned with obtaining approximate solutions while maintaining reasonable bounds on errors.

Numerical analysis naturally finds applications in all fields of engineering and the physical sciences, but in the 21st century, the life sciences and even the arts have adopted elements of scientific computations. Ordinary differential equations appear in celestial mechanics (planets, stars and galaxies); numerical linear algebra is important for data analysis; stochastic differential equations and Markov chains are essential in simulating living cells for medicine and biology.

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 21:59 , Processed in 0.146164 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部