Mathematics Mathematical objects Numbers view content

List of numbers

2014-3-16 16:50| view publisher: amanda| wiki(57883.com) 0 : 0

description: Rational numbersMain article: Rational numberNatural numbersMain article: Natural number0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 1920 21 22 23 24 25 26 27 28 2930 31 32 33 34 35 36 37 38 3940 41 ...
Rational numbers

Main article: Rational number
Natural numbers
Main article: Natural number
0    1    2    3    4    5    6    7    8    9
10    11    12    13    14    15    16    17    18    19
20    21    22    23    24    25    26    27    28    29
30    31    32    33    34    35    36    37    38    39
40    41    42    43    44    45    46    47    48    49
50    51    52    53    54    55    56    57    58    59
60    61    62    63    64    65    66    67    68    69
70    71    72    73    74    75    76    77    78    79
80    81    82    83    84    85    86    87    88    89
90    91    92    93    94    95    96    97    98    99
100    101    102    103    104    105    106    107    108    109
110    111    112    113    114    115    116    117    118    119
120    121    122    123    124    125    126    127    128    129
130    131    132    133    134    135    136    137    138    139
140    141    142    143    144    145    146    147    148    149
150    151    152    153    154    155    156    157    158    159
160    161    162    163    164    165    166    167    168    169
170    171    172    173    174    175    176    177    178    179
180    181    182    183    184    185    186    187    188    189
190    191    192    193    194    195    196    197    198    199
200    201    202    203    204    205    206    207    208    209
210    211    212    213    214    215    216    217    218    219
220    230    240    250    260    270    280    290
300    400    500    600    700    800    900
1000    2000    3000    4000    5000    6000    7000    8000    9000
10000    20000    30000    40000    50000    60000    70000    80000    90000
100k–1M    1M–10M    10M–100M    100M–1G    1G–10G
Larger numbers
Powers of ten (scientific notation)
Main article: Orders of magnitude (numbers)
Integers
Main article: Integer
Notable integers
Other numbers that are notable for their mathematical properties or cultural meanings include:

−40, the equal point in the Fahrenheit and Celsius scales.
−1, a number commonly used in computer science.
2, the base of the binary number system, used in almost all modern computers and information systems.
10, the number base for most modern counting systems.
12, the number base for some ancient counting systems and the basis for some modern measuring systems.
42, the "answer to life, the universe and everything" in the popular science fiction work The Hitchhiker's Guide to the Galaxy.
60, the number base for some ancient counting systems and the basis for many modern measuring systems.
255, 28−1, a Mersenne number and the smallest perfect totient number that is neither a power of three nor thrice a prime. It is also the largest number that can be represented using an 8-bit unsigned integer.
496, a perfect number.
666, commonly known as the number of the beast.
786, regarded as sacred in the Muslim Abjad numerology.
1729, a taxicab number; the smallest positive integer that can be written as the sum of two positive cubes in two different ways. Also known as the Hardy-Ramanujan number[1]
65535, 216-1, the maximum value of a 16-bit unsigned integer.
142857, the smallest base 10 cyclic number.
2147483647, 231−1, the maximum value of a 32-bit signed integer using two's complement representation.
9814072356, the largest perfect power that contains no repeated digits in base ten.
9223372036854775807, 263−1, the maximum value of a 64-bit signed integer using two's complement representation.
Named integers
Googol and googolplex
Graham's number
Moser's number
Shannon number
Hardy–Ramanujan number
Skewes' number
Number of the Beast
Kaprekar's constant


Prime numbers
Main article: Prime numbers
A prime number is a positive integer which has exactly two divisors: one and itself.

  2      3      5      7     11     13     17     19     23     29
 31     37     41     43     47     53     59     61     67     71
 73     79     83     89     97    101    103    107    109    113
127    131    137    139    149    151    157    163    167    173
179    181    191    193    197    199    211    223    227    229
233    239    241    251    257    263    269    271    277    281
283    293    307    311    313    317    331    337    347    349
353    359    367    373    379    383    389    397    401    409
419    421    431    433    439    443    449    457    461    463
467    479    487    491    499    503    509    521    523    541
Highly composite numbers
Main article: Highly composite number
A highly composite number (HCN) is a positive integer with more divisors than any smaller positive integer. They are often used in geometry, grouping and time measurement.

The first 20 highly composite numbers (the seven values with more divisors than any lesser number than twice itself are in bold):

1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1 260, 1 680, 2 520, 5 040, 7 560

Perfect numbers
Main article: Perfect number
A perfect number is an integer that is the sum of its positive proper divisors (all divisors except itself).

The first 10 perfect numbers:

1    6
2    28
3    496
4    8 128
5    33 550 336
6    8 589 869 056
7    137 438 691 328
8    2 305 843 008 139 952 128
9    2 658 455 991 569 831 744 654 692 615 953 842 176
10       191 561 942 608 236 107 294 793 378 084 303 638 130 997 321 548 169 216
Cardinal numbers
Main article: cardinal number
In the following tables, [and] indicates that the word and is used in some dialects (such as British English), and omitted in other dialects (such as American English).

Small numbers
This table demonstrates the standard English construction of small cardinal numbers up to one hundred million—names for which all variants of English agree.

Value    Name    Alternate names, and names for sets of the given size
0    Zero    aught, cipher, cypher, donut, goose egg, love, nada, naught, nil, none, nought, nowt, null, ought, oh, squat, zed, zilch, zip
1    One    ace, individual, single, singleton, unary, unit, unity
2    Two    binary, brace, couple, couplet, distich, deuce, double, doubleton, duad, duality, duet, duo, dyad, pair, span, twain, twin, twosome, yoke
3    Three    deuce-ace, leash, set, tercet, ternary, ternion, terzetto, threesome, tierce, trey, triad, trine, trinity, trio, triplet, troika, hat-trick
4    Four    foursome, quadruplet, quatern, quaternary, quaternion, quaternity, quartet, tetrad
5    Five    cinque, fin, fivesome, pentad, quint, quintet, quintuplet
6    Six    half dozen, hexad, sestet, sextet, sextuplet, sise
7    Seven    heptad, septet, septuple
8    Eight    octad, octave, octet, octonary, octuplet, ogdoad
9    Nine    ennead
10    Ten    deca, decade
11    Eleven    onze, ounze, ounce
12    Twelve    dozen
13    Thirteen    baker's dozen, long dozen[2]
14    Fourteen
15    Fifteen
16    Sixteen
17    Seventeen
18    Eighteen
19    Nineteen
20    Twenty    score
21    Twenty-one    long score[2]
22    Twenty-two    Deuce-deuce
23    Twenty-three
24    Twenty-four    two dozen
25    Twenty-five
26    Twenty-six
27    Twenty-seven
28    Twenty-eight
29    Twenty-nine
30    Thirty
31    Thirty-one
40    Forty    two-score
50    Fifty    half-century
60    Sixty    three-score
70    Seventy    three-score and ten
80    Eighty    four-score
87    Eighty-seven    four-score and seven
90    Ninety
100    One hundred    centred, century, ton, short hundred
101    One hundred [and] one
110    One hundred [and] ten
111    One hundred [and] eleven
120    One hundred [and] twenty    long hundred,[2] great hundred, (obsolete) hundred
121    One hundred [and] twenty-one
144    One hundred [and] forty-four    gross, dozen dozen, small gross
169    One hundred [and] sixty-nine    baker's gross[citation needed]
200    Two hundred
300    Three hundred
400    Four hundred
500    Five hundred
600    Six hundred
666    Six hundred [and] sixty-six    Number of the Beast
700    Seven hundred
777    Seven hundred [and] seventy-seven    Number of Luck
800    Eight hundred
900    Nine hundred
1 000    One thousand    chiliad, grand, G, thou, yard, kilo, k, millennium
1 001    One thousand [and] one
1 010    One thousand [and] ten
1 011    One thousand [and] eleven
1 024    One thousand [and] twenty-four    kibi or kilo in computing, see binary prefix (kilo is shortened to K, Kibi to Ki)
1 100    One thousand one hundred    Eleven hundred
1 101    One thousand one hundred [and] one
1 728    One thousand seven hundred [and] twenty-eight    great gross, long gross, dozen gross
2 000    Two thousand
3 000    Three thousand
10 000    Ten thousand    myriad, wan (China)
100 000    One hundred thousand    lakh
500 000    Five hundred thousand    crore (Iranian)
1 000 000    One million    Mega, meg, mil, (often shortened to M)
1 048 576    One million forty-eight thousand five hundred [and] seventy-six    Mibi or Mega in computing, see binary prefix (Mega is shortened to M, Mibi to Mi)
10 000 000    Ten million    crore (Bhartia)
100 000 000    One hundred million    yi (China)
English names for powers of 10
This table compares the English names of cardinal numbers according to various American, British, and Continental European conventions. See English numerals or names of large numbers for more information on naming numbers.

Short scale    Long scale    Power
Value    American    British
(Nicolas Chuquet)    Continental European
(Jacques Peletier du Mans)    of a thousand    of a million
100    One    1000−1+1    10000000
101    Ten        
102    Hundred        
103    Thousand    10000+1    10000000.5
106    Million    10001+1    10000001
109    Billion    Thousand million    Milliard    10002+1    10000001.5
1012    Trillion    Billion    10003+1    10000002
1015    Quadrillion    Thousand billion    Billiard    10004+1    10000002.5
1018    Quintillion    Trillion    10005+1    10000003
1021    Sextillion    Thousand trillion    Trilliard    10006+1    10000003.5
1024    Septillion    Quadrillion    10007+1    10000004
1027    Octillion    Thousand quadrillion    Quadrilliard    10008+1    10000004.5
1030    Nonillion    Quintillion    10009+1    10000005
1033    Decillion    Thousand quintillion    Quintilliard    100010+1    10000005.5
1036    Undecillion    Sextillion    100011+1    10000006
1039    Duodecillion    Thousand sextillion    Sextilliard    100012+1    10000006.5
1042    Tredecillion    Septillion    100013+1    10000007
1045    Quattuordecillion    Thousand septillion    Septilliard    100014+1    10000007.5
1048    Quindecillion    Octillion    100015+1    10000008
1051    Sexdecillion    Thousand octillion    Octilliard    100016+1    10000008.5
1054    Septendecillion    Nonillion    100017+1    10000009
1057    Octodecillion    Thousand nonillion    Nonilliard    100018+1    10000009.5
1060    Novemdecillion    Decillion    100019+1    100000010
1063    Vigintillion    Thousand decillion    Decilliard    100020+1    100000010.5
1066    Unvigintillion    Undecillion    100021+1    100000011
1069    Duovigintillion    Thousand undecillion    Undecilliard    100022+1    100000011.5
1072    Trevigintillion    Duodecillion    100023+1    100000012
1075    Quattuorvigintillion    Thousand duodecillion    Duodecilliard    100024+1    100000012.5
1078    Quinvigintillion    Tredecillion    100025+1    100000013
...    ...    ...    ...    ...
1093    Trigintillion    Thousand quindecillion    Quindecilliard    100030+1    100000015.5
...    ...    ...    ...    ...
10120    Novemtrigintillion    Vigintillion    100039+1    100000020
10123    Quadragintillion    Thousand vigintillion    Vigintilliard    100040+1    100000020.5
...    ...    ...    ...    ...
10153    Quinquagintillion    Thousand quinvigintillion    Quinvigintilliard    100050+1    100000025.5
...    ...    ...    ...    ...
10180    Novemquinquagintillion    Trigintillion    100059+1    100000030
10183    Sexagintillion    Thousand trigintillion    Trigintilliard    100060+1    100000030.5
...    ...    ...    ...    ...
10213    Septuagintillion    Thousand quintrigintillion    Quintrigintilliard    100070+1    100000035.5
...    ...    ...    ...    ...
10240    Novemseptuagintillion    Quadragintillion    100079+1    100000040
10243    Octogintillion    Thousand quadragintillion    Quadragintilliard    100080+1    100000040.5
...    ...    ...    ...    ...
10273    Nonagintillion    Thousand quinquadragintillion    Quinquadragintilliard    100090+1    100000045.5
...    ...    ...    ...    ...
10300    Novemnonagintillion    Quinquagintillion    100099+1    100000050
10303    Centillion    Thousand quinquagintillion    Quinquagintilliard    1000100+1    100000050.5
...        ...    ...    ...
10360        Sexagintillion    1000119+1    100000060
10420        Septuagintillion    1000139+1    100000070
10480        Octogintillion    1000159+1    100000080
10540        Nonagintillion    1000179+1    100000090
10600        Centillion    1000199+1    1000000100
10603    Ducentillion    Thousand centillion    Centilliard    1000200+1    1000000100.5
There is no consistent and widely accepted way to extend cardinals beyond centillion (centilliard).

Proposed systematic names for powers of 10
Myriad system
Proposed by Donald E. Knuth:

Value    Name    Notation
100    One    1
101    Ten    10
102    Hundred    100
103    Ten hundred    1000
104    Myriad    1,0000
105    Ten myriad    10,0000
106    Hundred myriad    100,0000
107    Ten hundred myriad    1000,0000
108    Myllion    1;0000,0000
1012    Myriad myllion    1,0000;0000,0000
1016    Byllion    1:0000,0000;0000,0000
1024    Myllion byllion    1;0000,0000:0000,0000;0000,0000
1032    Tryllion    1'0000,0000;0000,0000:0000,0000;0000,0000
1064    Quadryllion    1'0000,0000;0000,0000:0000,0000;0000,0000'0000,0000;0000,0000:0000,0000;0000,0000
10128    Quintyllion
10256    Sextyllion
10512    Septyllion
101024    Octyllion
102048    Nonyllion
104096    Decyllion
108192    Undecyllion
1016,384    Duodecyllion
1032,768    Tredecyllion
1065,536    Quattuordecyllion
10131,072    Quindecyllion
10262,144    Sexdecyllion
10524,288    Septendecyllion
101,048,576    Octodecyllion
102,097,152    Novemdecyllion
{10}^{\,\! 4\cdot 2^{20}}    Vigintyllion
{10}^{\,\! 4\cdot 2^{30}}    Trigintyllion
{10}^{\,\! 4 \cdot 2^{40}}    Quadragintyllion
{10}^{\,\! 4 \cdot 2^{50}}    Quinquagintyllion
{10}^{\,\! 4 \cdot 2^{60}}    Sexagintyllion
{10}^{\,\! 4 \cdot 2^{70}}    Septuagintyllion
{10}^{\,\! 4 \cdot 2^{80}}    Octogintyllion
{10}^{\,\! 4 \cdot 2^{90}}    Nonagintyllion
{10}^{\,\! 4 \cdot 2^{100}}    Centyllion
{10}^{\,\! 4 \cdot 2^{1000}}    Millyllion
{10}^{\,\! 4 \cdot 2^{10,000}}    Myryllion
SI-derived
Value    1000m    SI prefix    Name    Binary prefix    1024m=210m    Value
1 000    10001    k    Kilo    Ki    10241    1 024
1 000 000    10002    M    Mega    Mi    10242    1 048 576
1 000 000 000    10003    G    Giga    Gi    10243    1 073 741 824
1 000 000 000 000    10004    T    Tera    Ti    10244    1 099 511 627 776
1 000 000 000 000 000    10005    P    Peta    Pi    10245    1 125 899 906 842 624
1 000 000 000 000 000 000    10006    E    Exa    Ei    10246    1 152 921 504 606 846 976
1 000 000 000 000 000 000 000    10007    Z    Zetta    Zi    10247    1 180 591 620 717 411 303 424
1 000 000 000 000 000 000 000 000    10008    Y    Yotta    Yi    10248    1 208 925 819 614 629 174 706 176
Fractional numbers
Main article: Fraction (mathematics)
This is a table of English names for positive rational numbers less than or equal to 1. It also lists alternative names, but there is no widespread convention for the names of extremely small positive numbers.

Keep in mind that rational numbers like 0.12 can be represented in infinitely many ways, e.g. zero-point-one-two (0.12), twelve percent (12%), three twenty-fifths \left({3 \over 25}\right), nine seventy-fifths \left({9 \over 75} \right), six fiftieths \left({6 \over 50}\right), twelve hundredths \left({12 \over 100}\right), twenty-four two-hundredths \left({24 \over 200}\right), etc.

Value    Fraction    Common names    Alternative names
1    1 \over 1    One    0.999..., Unity
0.9    9 \over 10    Nine tenths, [zero] point nine
0.8    4 \over 5    Four fifths, eight tenths, [zero] point eight
0.7    7 \over 10    Seven tenths, [zero] point seven
0.6    3 \over 5    Three fifths, six tenths, [zero] point six
0.5    1 \over 2    One half, five tenths, [zero] point five
0.4    2 \over 5    Two fifths, four tenths, [zero] point four
0.3 (333 333)...    1 \over 3    One third
0.3    3 \over 10    Three tenths, [zero] point three
0.25    1 \over 4    One quarter, one fourth, twenty-five hundredths, [zero] point two five
0.2    1 \over 5    One fifth, two tenths, [zero] point two
0.16 (666 666)...    1 \over 6    One sixth
0.142 857 (142 857)...    1 \over 7    One seventh
0.125    1 \over 8    One eighth, one-hundred-[and-]twenty-five thousandths, [zero] point one two five
0.1 (111 111)...    1 \over 9    One ninth
0.1    1 \over 10    One tenth, [zero] point one    One perdecime, one perdime
0.090 (909 090)...    1 \over 11    One eleventh
0.09    9 \over 100    Nine hundredths, [zero] point zero nine
0.083 (333 333)...    1 \over 12    One twelfth
0.08    2 \over 25    Two twenty-fifths, eight hundredths, [zero] point zero eight
0.0625    1 \over 16    One sixteenth, six-hundred-[and-]twenty-five ten-thousandths, [zero] point zero six two five
0.05    1 \over 20    One twentieth, [zero] point zero five
0.047 619 (047 619)...    1 \over 21    One twenty-first
0.045 (454 545)...    1 \over 22    One twenty-second
0.043 478 260 869 565 217 3913 (043 478)...    1 \over 23    One twenty-third
0.03 (333 333)...    1 \over 30    One thirtieth
0.016 (666 666)...    1 \over 60    One sixtieth    One minute
0.012345679 (012345679)...    1 \over 81    One eighty-first
0.01    1 \over 100    One hundredth, [zero] point zero one    One percent
0.001    1 \over 1000    One thousandth, [zero] point zero zero one    One permille
0.000 27 (777 777)...    1 \over 3600    One thirty-six hundredth    One second
0.000 1    1 \over 10000    One ten-thousandth, [zero] point zero zero zero one    One myriadth, one permyria, one permyriad, one basis point
0.000 01    1 \over 10^5    One hundred-thousandth    One lakhth, one perlakh
0.000 001    1 \over 10^6    One millionth    One perion, one ppm
0.000 000 1    1 \over 10^7    One ten-millionth    One crorth, one percrore
0.000 000 01    1 \over 10^8    One hundred-millionth    One awkth, one perawk
0.000 000 001    1 \over 10^9    One billionth (in some dialects)    One ppb
0    0 \over 1    Zero    Nil
Irrational and suspected irrational numbers

Main article: irrational number
Algebraic numbers
Main article: Algebraic number
Expression    Approximate value    Notes
\frac{\sqrt{3}}{4}    0.433 012 701 892 219 323 381 861 585 376    Area of a triangle with sides of length one and half its height.
{\sqrt{5} - 1} \over 2    0.618 033 988 749 894 848 204 586 834 366    Golden ratio conjugate \Phi\,, reciprocal of and one less than the golden ratio.
\sqrt[12]{2}    1.059 463 094 359 295 264 561 825 294 946    Twelfth root of two.
Proportion between the frequencies of adjacent semitones in the equal temperament scale.
\frac{3 \sqrt{2}}{4}    1.060 660 171 779 821 286 601 266 543 157    The size of the cube that satisfies Prince Rupert's cube.
\sqrt[3]{2}    1.259 921 049 894 873 164 767 210 607 278    Cube root of two.
Length of the edge of a cube with volume two. See doubling the cube for the significance of this number.
n/a    1.303 577 269 034 296 391 257 099 112 153    Conway's constant, defined as the unique positive real root of a certain polynomial of degree 71.
\sqrt[3]{\frac{1}{2}+\frac{1}{6}\sqrt{\frac{23}{3}}}+
\sqrt[3]{\frac{1}{2}-\frac{1}{6}\sqrt{\frac{23}{3}}}    1.324 717 957 244 746 025 960 908 854 478    Plastic number, the unique real root of the cubic equation x^3=x+1\, .
\sqrt{2}    1.414 213 562 373 095 048 801 688 724 210    \sqrt{2} = 2 \sin 45^\circ = 2 \cos 45^\circ
Square root of two a.k.a. Pythagoras' constant.
Ratio of diagonal to side length in a square.
Proportion between the sides of paper sizes in the ISO 216 series (originally DIN 476 series).
\frac{\sqrt{17}-1}{2}    1.561 552 812 808 830 274 910 704 927 987    The Triangular root of 2.
{\sqrt{5} + 1} \over 2    1.618 033 988 749 894 848 204 586 834 366    Golden ratio \left(\phi\right), the larger of the two real roots of x^2=x+1\, .
\sqrt{3}    1.732 050 807 568 877 293 527 446 341 506    \sqrt{3} = 2 \sin 60^\circ = 2 \cos 30^\circ
Square root of three a.k.a. the measure of the fish.
Length of the space diagonal of a cube with edge length 1.
Length of the diagonal of a 1 \times \sqrt{2} rectangle.
Altitude of an equilateral triangle with side length 2.
Twice the altitude of an equilateral triangle with side length 1.
Altitude of a regular hexagon with side length 1 and diagonal length 2.
\frac{1+\sqrt[3]{19+3\sqrt{33}}+\sqrt[3]{19-3\sqrt{33}}}{3}    1.839 286 755 214 161 132 551 852 564 653    The Tribonacci constant.
Used in the formula for the volume of the snub cube and properties of some of its dual polyhedrons.
It satisfies the equation x + x−3 = 2.
\sqrt{5}    2.236 067 977 499 789 696 409 173 668 731    Square root of five.
Length of the diagonal of a 1 \times 2 rectangle.
Length of the diagonal of a \sqrt{2} \times \sqrt{3} rectangle.
Length of the space diagonal of a 1 \times \sqrt{2} \times \sqrt{2} rectangular box.
\sqrt{2} + 1    2.414 213 562 373 095 048 801 688 724 210    Silver ratio \left(\delta_S\right), the larger of the two real roots of x^2=2x+1\, .
\sqrt{6}    2.449 489 742 783 178 098 197 284 074 706    \sqrt{2} \cdot \sqrt{3} = area of a \sqrt{2} \times \sqrt{3} rectangle.
Length of the space diagonal of a 1 \times 1 \times 2 rectangular box.
Length of the diagonal of a 1 \times \sqrt{5} rectangle.
Length of the diagonal of a 2 \times \sqrt{2} rectangle.
Length of the diagonal of a square with side length \sqrt{3}.
\sqrt{7}    2.645 751 311 064 590 590 501 615 753 639    Length of the space diagonal of a 1 \times 2 \times \sqrt{2} rectangular box.
Length of the diagonal of a 1 \times \sqrt{6} rectangle.
Length of the diagonal of a 2 \times \sqrt{3} rectangle.
Length of the diagonal of a \sqrt{2} \times \sqrt{5} rectangle.
\sqrt{8}    2.828 427 124 746 190 097 603 377 448 419    2 \sqrt{2}
Volume of a cube with edge length \sqrt{2}.
Length of the diagonal of a square with side length 2.
Length of the diagonal of a 1 \times \sqrt{7} rectangle.
Length of the diagonal of a \sqrt{2} \times \sqrt{6} rectangle.
Length of the diagonal of a \sqrt{3} \times \sqrt{5} rectangle.
\sqrt{10}    3.162 277 660 168 379 331 998 893 544 433    \sqrt{2} \cdot \sqrt{5} = area of a \sqrt{2} \times \sqrt{5} rectangle.
Length of the diagonal of a 1 \times 3 rectangle.
Length of the diagonal of a 2 \times \sqrt{6} rectangle.
Length of the diagonal of a \sqrt{3} \times \sqrt{7} rectangle.
Length of the diagonal of a square with side length \sqrt{5}.
\sqrt{11}    3.316 624 790 355 399 849 114 932 736 671    Length of the space diagonal of a 1 \times 1 \times 3 rectangular box.
Length of the diagonal of a 1 \times \sqrt{10} rectangle.
Length of the diagonal of a 2 \times \sqrt{7} rectangle.
Length of the diagonal of a 3 \times \sqrt{2} rectangle.
Length of the diagonal of a \sqrt{3} \times \sqrt{8} rectangle.
Length of the diagonal of a \sqrt{5} \times \sqrt{6} rectangle.
\sqrt{12}    3.464 101 615 137 754 587 054 892 683 012    2 \sqrt{3}
Length of the space diagonal of a cube with edge length 2.
Length of the diagonal of a 1 \times \sqrt{11} rectangle.
Length of the diagonal of a 2 \times \sqrt{8} rectangle.
Length of the diagonal of a 3 \times \sqrt{3} rectangle.
Length of the diagonal of a \sqrt{2} \times \sqrt{10} rectangle.
Length of the diagonal of a \sqrt{5} \times \sqrt{7} rectangle.
Length of the diagonal of a square with side length \sqrt{6}.
Transcendental numbers
Main article: Transcendental number
(−1)i = e−π = 0.0432139183...
Liouville constant: c = 0.110001000000000000000001000...
Champernowne constant: C10 = 0.12345678910111213141516...
ii = √(e−π) = 0.207879576...
Copeland–Erdős constant: 0.235711131719232931374143...
The inverse of π: 0.318309886183790671537767526745028724068919291480...[3]
The inverse of e: 0.367879441171442321595523770161460867445811131031...[3]
Prouhet–Thue–Morse constant: τ = 0.412454033640...
The Logarithm of e to base 10: 0.434294481903251827651128918916605082294397005803...[3]
Omega constant: Ω = 0.5671432904097838729999686622...
Cahen's constant: c = 0.64341054629...
ln 2: 0.693147180559945309417232121458...
π/√18 = 0.7404... the maximum density of sphere packing in three dimensional Euclidean space according to the Kepler conjecture[4]
Gauss's constant: G = 0.8346268...
π/√12 = 0.9086..., the fraction of the plane covered by the densest possible circle packing[5]
ei+e-i = 2cos(1) = 1.08060461...
π4/90 = ζ(4) = 1.082323...[6]
Khinchin–Lévy constant: 1.1865691104...[1]
√2s: 1.559610469...[7]
Favard constant: K1 = 1.57079633...
log2 3: 1.584962501..., in fact, the logarithm of any positive integer to any integer base greater than one is either rational or transcendental.
√2√2: 1.6325269...
Komornik–Loreti constant: q = 1.787231650...
Universal parabolic constant: P2 = 2.29558714939...
Gelfond–Schneider constant: 2.665144143...
Euler's number: e = 2.718281828459045235360287471353...
Pi: π = 3.141592653589793238462643383279...
Van der Pauw's constant: pi/ln(2) = 4.53236014182719380962...[8]
i√i : 4.81047738..., √eπ
Tau, or 2π: τ = 6.283185307179586..., The ratio of the circumference to a radius, and the number of radians in a complete circle[9][10]
Gelfond's constant: 23.14069263277925...
Ramanujan's constant: e(π√163) = 262537412640768743.99999999999925...
Suspected transcendentals
-2W (½) = -0.703467422498391652049818601859902130..., the real solution to exp(x) = x2.
Z(1): -0.736305462867317734677899828925614672...
Heath-Brown–Moroz constant: C = 0.001317641...
Kepler–Bouwkamp constant: 0.1149420448...
MRB constant: 0.187859...
Meissel–Mertens constant: M = 0.2614972128476427837554268386086958590516...
Bernstein's constant: β = 0.2801694990...
Strongly carefree constant: 0.286747... [11]
Gauss–Kuzmin–Wirsing constant: λ1 = 0.3036630029... [12]
Hafner–Sarnak–McCurley constant: 0.3532363719...
Artin's constant: 0.3739558136...
Prime constant: ρ = 0.414682509851111660248109622...
Carefree constant: 0.428249... [13]
S(1): 0.438259147390354766076756696625152...
F(1): 0.538079506912768419136387420407556...
Stephens' constant: 0.575959... [14]
Euler–Mascheroni constant: γ = 0.577215664901532860606512090082...
Golomb–Dickman constant: λ = 0.62432998854355087099293638310083724...
Twin prime constant: C2 = 0.660161815846869573927812110014...
Feller-Tornier constant: 0.661317... [15]
Laplace limit: ε = 0.6627434193...[2]
Taniguchi's constant: 0.678234... [16]
Continued Fraction Constant: C = 0.697774657964007982006790592551...[17]
Embree–Trefethen constant: β* = 0.70258...
Sarnak's constant: 0.723648... [18]
Landau–Ramanujan constant: 0.76422365358922066299069873125...
C(1): 0.77989340037682282947420641365...
ζ(3)−1 = 0.831907..., the probability that three random numbers have no common factor.[4]
Brun's constant for prime quadruplets: B2 = 0.8705883800...
Quadratic class number constant: 0.881513... [19]
Catalan's constant: G = 0.915965594177219015054603514932384110774...
Viswanath's constant: σ(1) = 1.13198824...
ζ(3) = 1.202056903159594285399738161511449990764986292..., also known as Apéry's constant, known to be irrational, but not known whether or not it is transcendental.[20]
Vardi's constant: E = 1.264084735305...
Glaisher–Kinkelin constant: A = 1.28242712...
Mills' constant: A = 1.30637788386308069046...
Totient summatory constant: 1.339784... [21]
Ramanujan–Soldner constant: μ = 1.451369234883381050283968485892027449493…
Backhouse's constant: 1.456074948...
Lieb's square ice constant: 1.5396007...
Erdős–Borwein constant: E = 1.606695152415291763...
Somos' quadratic recurrence constant: σ = 1.661687949633594121296...
Niven's constant: c = 1.705211...
Brun's constant: B2 = 1.902160583104...
Landau's totient constant: 1.943596... [22]
exp(-W 0(-ln(3⅓))) = 2.47805268028830..., the smaller solution to 3x = x3 and what, when put to the root of itself, is equal to 3 put to the root of itself.[23]
Second Feigenbaum constant: α = 2.5029...
Sierpiński's constant: K = 2.5849817595792532170658936...
Barban's constant: 2.596536... [24]
Khinchin's constant: K0 = 2.685452001...[3]
Fransén–Robinson constant: F = 2.8077702420...
Murata's constant: 2.826419... [25]
Lévy's constant: γ = 3.275822918721811159787681882...
Reciprocal Fibonacci constant: ψ = 3.359885666243177553172011302918927179688905133731...
First Feigenbaum constant: δ = 4.6692...
Numbers not known with high precision
Landau's constant: 0.4330 < B < 0.472
Bloch's constant: 0.4332 < B < 0.4719
Landau's constant: 0.5 < L < 0.544
Landau's constant: 0.5 < A < 0.7853
Grothendieck constant: 1.67 < k < 1.79
Hypercomplex numbers

Main article: Hypercomplex number
Algebraic complex numbers
Imaginary unit: i = \sqrt{-1}
nth roots of unity: \xi^k_n = \cos\left(2\pi \tfrac{k}{n}\right)+i\sin\left(2\pi \tfrac{k}{n}\right)
Other hypercomplex numbers
The quaternions
The octonions
The sedenions
The dual numbers (with an infinitesimal)
Transfinite numbers

Main article: Transfinite number
Infinity in general: \infty
Aleph-null: \aleph_0: the smallest infinite cardinal, and the cardinality of \mathbb{N}, the set of natural numbers
Aleph-one: \aleph_1: the cardinality of ω1, the set of all countable ordinal numbers
Beth-one: (\beth_1): the cardinality of the continuum (2^{\aleph_0})
ℭ or \mathfrak c: the cardinality of the continuum (2^{\aleph_0})
omega: ω, the smallest infinite ordinal
Numbers representing measured quantities

Pair: 2 (the base of the binary numeral system)
Dozen: 12 (the base of the duodecimal numeral system)
Baker's dozen: 13
Score: 20 (the base of the vigesimal numeral system)
Gross: 144 (= 122)
Great gross: 1728 (= 123)
Numbers representing scientific quantities

Avogadro constant: NA = 6.0221417930... ×1023 mol−1
Coulomb's constant: k e  = 8.987551787368...
Electronvolt: eV = 1.60217648740... ×10–19 J
Electron relative atomic mass: Ar(e) = 0.0005485799094323...
Fine structure constant: α = 0.007297352537650...
Gravitational constant: G = 6.67384...
Molar mass constant: Mu = 0.001 kg/mol
Planck constant: h = 6.6260689633... ×10–34 Js
Rydberg constant: R∞ = 10973731.56852773... m−1
Speed of light in vacuum: c = 299792458 m/s
Stefan-Boltzmann constant: σ = 5.670400×10−8 W • m−2 • K−4

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2014-3-16 16:50 , Processed in 0.112639 second(s), 17 queries .

57883.com service for you! X3.1

Back to top