搜索
热搜: music

List of irreducible complex reflection groups

2014-3-16 16:14| view publisher: amanda| views: 1003| wiki(57883.com) 0 : 0

description: There are a few duplicates in the first 3 lines of this list; see the previous section for details.ST is the Shephard–Todd number of the reflection group.Rank is the dimension of the complex vector s ...
There are a few duplicates in the first 3 lines of this list; see the previous section for details.

ST is the Shephard–Todd number of the reflection group.
Rank is the dimension of the complex vector space the group acts on.
Structure describes the structure of the group. The symbol * stands for a central product of two groups. For rank 2, the quotient by the (cyclic) center is the group of rotations of a tetrahedron, octahedron, or icosahedron (T = Alt(4), O = Sym(4), I = Alt(5), of orders 12, 24, 60), as stated in the table. For the notation 21+4, see extra special group.
Order is the number of elements of the group.
Reflections describes the number of reflections: 26412 means that there are 6 reflections of order 2 and 12 of order 4.
Degrees gives the degrees of the fundamental invariants of the ring of polynomial invariants. For example, the invariants of group number 4 form a polynomial ring with 2 generators of degrees 4 and 6.
ST    Rank    Structure and names    Order    Reflections    Degrees    Codegrees
1    n−1    Symmetric group G(1,1,n) = Sym(n)    n!    2n(n − 1)/2    2, 3, ...,n    0,1,...,n − 2
2    n    G(m,p,n) m > 1, n > 1, p|m (G(2,2,2) is reducible)    mnn!/p    2mn(n−1)/2,dnφ(d) (d|m/p, d > 1)    m,2m,..,(n − 1)m; mn/p    0,m,..., (n − 1)m if p < m; 0,m,...,(n − 2)m, (n − 1)m − n if p = m
3    1    Cyclic group G(m,1,1) = Zm    m    dφ(d) (d|m, d > 1)    m    0
4    2    Z2.T = 3[3]3    24    38    4,6    0,2
5    2    Z6.T = 3[4]3    72    316    6,12    0,6
6    2    Z4.T = 3[6]2    48    2638    4,12    0,8
7    2    Z12.T = 〈3,3,3〉2    144    26316    12,12    0,12
8    2    Z4.O = 4[3]4    96    26412    8,12    0,4
9    2    Z8.O = 4[6]2    192    218412    8,24    0,16
10    2    Z12.O = 4[4]3    288    26316412    12,24    0,12
11    2    Z24.O = 〈4,3,2〉12    576    218316412    24,24    0,24
12    2    Z2.O= GL2(F3)    48    212    6,8    0,10
13    2    Z4.O = 〈4,3,2〉2    96    218    8,12    0,16
14    2    Z6.O = 3[8]2    144    212316    6,24    0,18
15    2    Z12.O = 〈4,3,2〉6    288    218316    12,24    0,24
16    2    Z10.I = 5[3]5    600    548    20,30    0,10
17    2    Z20.I = 5[6]2    1200    230548    20,60    0,40
18    2    Z30.I = 5[4]3    1800    340548    30,60    0,30
19    2    Z60.I = 〈5,3,2〉30    3600    230340548    60,60    0,60
20    2    Z6.I = 3[5]3    360    340    12,30    0,18
21    2    Z12.I = 3[10]2    720    230340    12,60    0,48
22    2    Z4.I = 〈5,3,2〉2    240    230    12,20    0,28
23    3    W(H3) = Z2 × PSL2(5), Coxeter    120    215    2,6,10    0,4,8
24    3    W(J3(4)) = Z2 × PSL2(7), Klein    336    221    4,6,14    0,8,10
25    3    W(L3) = W(P3) = 31+2.SL2(3), Hessian    648    324    6,9,12    0,3,6
26    3    W(M3) =Z2 ×31+2.SL2(3), Hessian    1296    29 324    6,12,18    0,6,12
27    3    W(J3(5)) = Z2 ×(Z3.Alt(6)), Valentiner    2160    245    6,12,30    0,18,24
28    4    W(F4) = (SL2(3)* SL2(3)).(Z2 × Z2) Weyl    1152    212+12    2,6,8,12    0,4,6,10
29    4    W(N4) = (Z4*21 + 4).Sym(5)    7680    240    4,8,12,20    0,8,12,16
30    4    W(H4) = (SL2(5)*SL2(5)).Z2 Coxeter    14400    260    2, 12, 20,30    0,10,18,28
31    4    W(EN4) = W(O4) = (Z4*21 + 4).Sp4(2)    46080    260    8,12,20,24    0,12,16,28
32    4    W(L4) = Z3 × Sp4(3)    155520    380    12,18,24,30    0,6,12,18
33    5    W(K5) = Z2 ×Ω5(3) = Z2 × PSp4(3) = Z2 × PSU4(2)    51840    245    4,6,10,12,18    0,6,8,12,14
34    6    W(K6)= Z3.Ω−
6(3).Z2, Mitchell's group    39191040    2126    6,12,18,24,30,42    0,12,18,24,30,36
35    6    W(E6) = SO5(3) = O−
6(2) = PSp4(3).Z2 = PSU4(2).Z2, Weyl    51840    236    2,5,6,8,9,12    0,3,4,6,7,10
36    7    W(E7) = Z2 ×Sp6(2), Weyl    2903040    263    2,6,8,10,12,14,18    0,4,6,8,10,12,16
37    8    W(E8)= Z2.O+
8(2), Weyl    696729600    2120    2,8,12,14,18,20,24,30    0,6,10,12,16,18,22,28
For more information, including diagrams, presentations, and codegrees of complex reflection groups, see the tables in (Michel Broué, Gunter Malle & Raphaël Rouquier 1998).
up one:Classificationnext:Degrees

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 22:04 , Processed in 0.152464 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部