搜索
热搜: music
门户 History The Ages of history Industrial Age view content

Metallurgy

2014-3-5 09:59| view publisher: amanda| views: 1002| wiki(57883.com) 0 : 0

description: A major change in the metal industries during the era of the Industrial Revolution was the replacement of wood and other bio-fuels with coal. For a given amount of heat, coal required much less labor ...
A major change in the metal industries during the era of the Industrial Revolution was the replacement of wood and other bio-fuels with coal. For a given amount of heat, coal required much less labor to mine than cutting wood,[36] and coal was more abundant than wood.[37]
Use of coal in smelting started somewhat before the Industrial Revolution, based on innovations by Sir Clement Clerke and others from 1678, using coal reverberatory furnaces known as cupolas. These were operated by the flames playing on the ore and charcoal or coke mixture, reducing the oxide to metal. This has the advantage that impurities (such as sulfur ash) in the coal do not migrate into the metal. This technology was applied to lead from 1678 and to copper from 1687. It was also applied to iron foundry work in the 1690s, but in this case the reverberatory furnace was known as an air furnace. The foundry cupola is a different (and later) innovation.
This was followed by Abraham Darby, who made great strides using coke to fuel his blast furnaces at Coalbrookdale in 1709. However, the coke pig iron he made was used mostly for the production of cast-iron goods such as pots and kettles. He had the advantage over his rivals in that his pots, cast by his patented process, were thinner and cheaper than theirs. Coke pig iron was hardly used to produce bar iron in forges until the mid-1750s, when his son Abraham Darby II built Horsehay and Ketley furnaces (not far from Coalbrookdale). By then, coke pig iron was cheaper than charcoal pig iron. Since cast iron was becoming cheaper and more plentiful, it began being a structural material following the building of the innovative Iron Bridge in 1778 by Abraham Darby III.
Bar iron for smiths to forge into consumer goods was still made in finery forges, as it long had been. However, new processes were adopted in the ensuing years. The first is referred to today as potting and stamping, but this was superseded by Henry Cort's puddling process.
Henry Cort developed two significant iron manufacturing processes: rolling in 1783 and puddling in 1784.[38] Rolling replaced hammering for consolidating wrought iron and expelling some of the dross. Rolling was 15 times faster than hammering with a trip hammer. Puddling produced a structural grade iron at a relatively low cost.
Puddling was a means of decarburizing pig iron by slow oxidation, with iron ore as the oxygen source, as the iron was manually stirred using a long rod. The decarburized iron, having a higher melting point than cast iron, was raked into globs by the puddler. When the glob was large enough the puddler would remove it. Puddling was backbreaking and extremely hot work. Few puddlers lived to be 40. Puddling was done in a reverberatory furnace, allowing coal or coke to be used as fuel. The puddling process continued to be used until the late 19th century when iron was being displaced by steel. Because puddling required human skill in sensing the iron globs, it was never successfully mechanized.
Up to that time, British iron manufacturers had used considerable amounts of imported iron to supplement native supplies. This came principally from Sweden from the mid-17th century and later also from Russia from the end of the 1720s. However, from 1785, imports decreased because of the new iron making technology, and Britain became an exporter of bar iron as well as manufactured wrought iron consumer goods.
Two decades before the Industrial Revolution an improvement was made in the production of steel, which was an expensive commodity and used only where iron would not do, such as for cutting edge tools and for springs. Benjamin Huntsman developed his crucible steel technique in the 1740s. The raw material for this was blister steel, made by the cementation process.
The supply of cheaper iron and steel aided a number of industries such as those making nails, hinges, wire and other hardware items. The development of machine tools allowed better working of iron, causing it to be increasingly used in the rapidly growing machinery and engine industries.

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 22:11 , Processed in 0.147711 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部