搜索
热搜: music
门户 History The Ages of history Industrial Age view content

Important technological developments

2014-3-5 09:58| view publisher: amanda| views: 1002| wiki(57883.com) 0 : 0

description: The commencement of the Industrial Revolution is closely linked to a small number of innovations, beginning in the second half of the 18th century. By the 1830s the following gains had been made in im ...

The commencement of the Industrial Revolution is closely linked to a small number of innovations,[16] beginning in the second half of the 18th century. By the 1830s the following gains had been made in important technologies:
Textiles – Mechanized cotton spinning powered by steam or water increased the output of a worker by a factor of about 1000. The power loom increased the output of a worker by a factor of over 40.[17] The cotton gin increased productivity or removing seed from cotton by a factor of 50.[11] Large gains in productivity also occurred in spinning and weaving of wool and linen, but they were not as great as in cotton.[18]
Steam power – The efficiency of steam engines increased so that they used between one-fifth and one-tenth as much fuel. The adaption of stationary steam engines to rotary motion made them suitable for industrial uses. The high pressure engine had a high power to weight ratio, making it suitable for transportation. Steam power underwent a rapid expansion after 1800.
Iron making – The substitution of coke for charcoal greatly lowered the fuel cost of pig iron and wrought iron production.[19] Using coke also allowed larger blast furnaces,[20][21] resulting in economies of scale. The cast iron blowing cylinder was first used in 1760. It was later improved by making it double acting, which allowed higher furnace temperatures. The puddling process produced a structural grade iron at a lower cost than the finery forge.[22] The rolling mill was fifteen times faster than hammering wrought iron.[22] Hot blast (1829) greatly increased fuel efficiency in iron production in the following decades.
Textile manufacture
Main article: Textile manufacture during the Industrial Revolution
In the late 17th and early 18th centuries the British government passed a series of Calico Acts in order to protect the domestic woolen industry from the increasing amounts of cotton fabric that were being imported from East India.[23][24]
There was also a demand for heavier fabric, which was met by a domestic industry around Lancashire that produced fustian, a cloth with flax warp and cotton weft. Flax was used for the warp because wheel spun cotton did not have sufficient strength, but the resulting blend was not as soft as 100% cotton and was more difficult to sew.[24]
Spinning and weaving were done in households, for domestic consumption and as a cottage industry under the putting-out system. Occasionally the work was done in the workshop of a master weaver. Under the putting-out system, home based workers produced under contract to merchant sellers, who often supplied the raw materials. In the off season the women, typically farmers' wives, did the spinning and the men did the weaving. Using the spinning wheel it took anywhere from four to eight spinners to supply one hand loom weaver.[18][24][25] The flying shuttle patented in 1733 by John Kay, with a number of subsequent improvements including an important one in 1747, doubled the output of a weaver, worsening the imbalance between spinning and weaving. It became widely used around Lancashire after 1760 when Robert Kay, John's son, invented the drop box.[26]
Watch video: Demonstration of fly shuttle on YouTube
Lewis Paul patented the roller spinning machine and the flyer-and-bobbin system for drawing wool to a more even thickness, developed with the help of John Wyatt in Birmingham. Paul and Wyatt opened a mill in Birmingham which used their new rolling machine powered by a donkey. In 1743, a factory was opened in Northampton with fifty spindles on each of five of Paul and Wyatt's machines. This operated until about 1764. A similar mill was built by Daniel Bourn in Leominster, but this burnt down. Both Lewis Paul and Daniel Bourn patented carding machines in 1748. Using two sets of rollers that travelled at different speeds, it was later used in the first cotton spinning mill. Lewis's invention was later developed and improved by Richard Arkwright in his water frame and Samuel Crompton in his spinning mule.

In 1764 in the village of Stanhill, Lancashire, James Hargreaves invented the spinning jenny, which he patented in 1770. It was the first practical spinning frame with multiple spindles.[27] The jenny worked in a similar manner to the spinning wheel, by first clamping down on the fibers, then by drawing them out, followed by twisting.[28] It was a simple, wooden framed machine that only cost about £6 for a 40 spindle model in 1792,[29] and was used mainly by home spinners. The jenny produced a lightly twisted yarn only suitable for weft, not warp.[30]
The spinning frame or water frame was developed by Richard Arkwright who, along with two partners, patented it in 1769. The design was partly based on a spinning machine built for Thomas High by clock maker John Kay, who was hired by Arkwright.[31] For each spindle, the water frame used a series of four pairs of rollers, each operating at a successively higher rotating speed, to draw out the fiber, which was then twisted by the spindle. The roller spacing was slightly longer than the fiber length. Too close a spacing caused the fibers to break while too distant a spacing caused uneven thread. The top rollers were leather covered and loading on the rollers was applied by a weight. The weights kept the twist from backing up before the rollers. The bottom rollers were wood and metal, with fluting along the length. The water frame was able to produce a hard, medium count thread suitable for warp, finally allowing 100% cotton cloth to be made in Britain. A horse powered the first factory to use the spinning frame. Water power was used by Arkwright and partners at a factory in Cromford, Derbyshire in 1771, giving the invention its name.
Watch video: Demonstration of water frame on YouTube

Samuel Crompton's Spinning Mule, introduced in 1779, was a combination of the spinning jenny and the water frame in which the spindles were placed on a carriage, which went through an operational sequence during which the rollers stopped while the carriage moved away from the drawing roller to finish drawing out the fibers as the spindles started rotating.[32] Crompton's mule was able to produce finer thread than hand spinning and at a lower cost. Mule spun thread was of suitable strength to be used as warp, and finally allowed Britain to produce good quality calico cloth.[32]
Watch video: Demonstration of spinning mule on YouTube

Realizing that the expiration of the Arkwright patent would greatly increase the supply of spun cotton and lead to a shortage of weavers, Edmund Cartwright developed a vertical power loom which he patented in 1785. In 1776 he patented a two man operated loom, that was more conventional.[33] Cartwright built two factories; the first burned down and the second was sabotaged by his workers. Cartwright's loom design had several flaws, the most serious being thread breakage. Samuel Horrocks patented a fairly successful loom in 1813. Horock's loom was improved by Richard Roberts in 1822 and these were produced in large numbers by Roberts, Hill & Co.[34]
The demand for cotton presented an opportunity to planters in the Southern United States, who thought upland cotton would be a profitable crop if a better way could be found to remove the seed. Eli Whitney responded to the challenge by inventing the cotton gin, an inexpensive device. With a cotton gin a man could remove seed from as much upland cotton in one day as would have previously taken a woman working two months to process at one pound per day.[11]
Other inventors increased the efficiency of the individual steps of spinning (carding, twisting and spinning, and rolling) so that the supply of yarn increased greatly, which fed a weaving industry that was advancing with improvements to shuttles and the loom or 'frame'. The output of an individual labourer increased dramatically, with the effect that the new machines were seen as a threat to employment, and early innovators were attacked and their inventions destroyed.
To capitalise upon these advances, it took a class of entrepreneurs, of which the most famous is Richard Arkwright. He is credited with a list of inventions, but these were actually developed by people such as Thomas Highs and John Kay; Arkwright nurtured the inventors, patented the ideas, financed the initiatives, and protected the machines. He created the cotton mill which brought the production processes together in a factory, and he developed the use of power—first horse power and then water power—which made cotton manufacture a mechanised industry. Before long steam power was applied to drive textile machinery. Manchester acquired the nickname Cottonopolis during the early 19th century owing to its sprawl of textile factories.[35]

up one:Etymologynext:Metallurgy

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 22:11 , Processed in 0.155354 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部