搜索
热搜: music
门户 History History of the natural sciences Physics view content

19th century

2014-3-22 18:33| view publisher: amanda| views: 1002| wiki(57883.com) 0 : 0

description: In 1800, Alessandro Volta invented the electric battery (known of the voltaic pile) and thus improved the way electric currents could also be studied. A year later, Thomas Young demonstrated the wave ...
In 1800, Alessandro Volta invented the electric battery (known of the voltaic pile) and thus improved the way electric currents could also be studied. A year later, Thomas Young demonstrated the wave nature of light—which received strong experimental support from the work of Augustin-Jean Fresnel—and the principle of interference. In 1813, Peter Ewart supported the idea of the conservation of energy in his paper On the measure of moving force. In 1820, Hans Christian Ørsted found that a current-carrying conductor gives rise to a magnetic force surrounding it, and within a week after Ørsted's discovery reached France, André-Marie Ampère discovered that two parallel electric currents will exert forces on each other. In 1821, William Hamilton began his analysis of Hamilton's characteristic function. In 1821, Michael Faraday built an electricity-powered motor, while Georg Ohm stated his law of electrical resistance in 1826, expressing the relationship between voltage, current, and resistance in an electric circuit. A year later, botanist Robert Brown discovered Brownian motion: pollen grains in water undergoing movement resulting from their bombardment by the fast-moving atoms or molecules in the liquid.

In 1831 Faraday (and independently Joseph Henry) discovered the reverse effect, the production of an electric potential or current through magnetism – known as electromagnetic induction; these two discoveries are the basis of the electric motor and the electric generator, respectively. In 1834, Carl Jacobi discovered his uniformly rotating self-gravitating ellipsoids. In 1834, John Russell observed a nondecaying solitary water wave (soliton) in the Union Canal near Edinburgh and used a water tank to study the dependence of solitary water wave velocities on wave amplitude and water depth. In 1835, William Hamilton stated Hamilton's canonical equations of motion. In the same year, Gaspard Coriolis examined theoretically the mechanical efficiency of waterwheels, and deduced the Coriolis effect. In 1841, Julius Robert von Mayer, an amateur scientist, wrote a paper on the conservation of energy but his lack of academic training led to its rejection. In 1842, Christian Doppler proposed the Doppler effect. In 1847, Hermann von Helmholtz formally stated the law of conservation of energy. In 1851, Léon Foucault showed the Earth's rotation with a huge pendulum (Foucault pendulum).

There were important advances in continuum mechanics in the first half of the century, namely formulation of laws of elasticity for solids and discovery of Navier–Stokes equations for fluids.

Laws of thermodynamics
Further information: History of thermodynamics


William Thomson (1824–1907), later Lord Kelvin
In the 19th century, the connection between heat and mechanical energy was established quantitatively by Julius Robert von Mayer and James Prescott Joule, who measured the mechanical equivalent of heat in the 1840s. In 1849, Joule published results from his series of experiments (including the paddlewheel experiment) which show that heat is a form of energy, a fact that was accepted in the 1850s. The relation between heat and energy was important for the development of steam engines, and in 1824 the experimental and theoretical work of Sadi Carnot was published. Carnot captured some of the ideas of thermodynamics in his discussion of the efficiency of an idealized engine. Sadi Carnot's work provided a basis for the formulation of the first law of thermodynamics—a restatement of the law of conservation of energy—which was stated around 1850 by William Thomson, later known as Lord Kelvin, and Rudolf Clausius. Lord Kelvin, who had extended the concept of absolute zero from gases to all substances in 1848, drew upon the engineering theory of Lazare Carnot, Sadi Carnot, and Émile Clapeyron–as well as the experimentation of James Prescott Joule on the interchangeability of mechanical, chemical, thermal, and electrical forms of work—to formulate the first law.

Kelvin and Clausius also stated the second law of thermodynamics, which was originally formulated in terms of the fact that heat does not spontaneously flow from a colder body to a hotter. Other formulations followed quickly (for example, the second law was expounded in Thomson and Peter Guthrie Tait's influential work Treatise on Natural Philosophy) and Kelvin in particular understood some of the law's general implications. The second Law was the idea that gases consist of molecules in motion had been discussed in some detail by Daniel Bernoulli in 1738, but had fallen out of favor, and was revived by Clausius in 1857. In 1850, Hippolyte Fizeau and Léon Foucault measured the speed of light in water and find that it is slower than in air, in support of the wave model of light. In 1852, Joule and Thomson demonstrated that a rapidly expanding gas cools, later named the Joule–Thomson effect or Joule–Kelvin effect. Hermann von Helmholtz puts forward the idea of the heat death of the universe in 1854, the same year that Clausius established the importance of dQ/T (Clausius's theorem) (though he did not yet name the quantity).

James Clerk Maxwell


James Clerk Maxwell (1831–1879)
In 1859, James Clerk Maxwell discovered the distribution law of molecular velocities. Maxwell showed that electric and magnetic fields are propagated outward from their source at a speed equal to that of light and that light is one of several kinds of electromagnetic radiation, differing only in frequency and wavelength from the others. In 1859, Maxwell worked out the mathematics of the distribution of velocities of the molecules of a gas. The wave theory of light was widely accepted by the time of Maxwell's work on the electromagnetic field, and afterward the study of light and that of electricity and magnetism were closely related. In 1864 James Maxwell published his papers on a dynamical theory of the electromagnetic field, and stated that light is an electromagnetic phenomenon in the 1873 publication of Maxwell's Treatise on Electricity and Magnetism. This work drew upon theoretical work by German theoreticians such as Carl Friedrich Gauss and Wilhelm Weber. The encapsulation of heat in particulate motion, and the addition of electromagnetic forces to Newtonian dynamics established an enormously robust theoretical underpinning to physical observations.

The prediction that light represented a transmission of energy in wave form through a "luminiferous ether", and the seeming confirmation of that prediction with Helmholtz student Heinrich Hertz's 1888 detection of electromagnetic radiation, was a major triumph for physical theory and raised the possibility that even more fundamental theories based on the field could soon be developed.[36][37][38][39] Experimental confirmation of Maxwell's theory was provided by Hertz, who generated and detected electric waves in 1886 and verified their properties, at the same time foreshadowing their application in radio, television, and other devices. In 1887, Heinrich Hertz discovered the photoelectric effect. Research on the transmission of electromagnetic waves began soon after, with many scientists and inventors conducting experiments during the 1890s leading to the first successful commercial wireless telegraphy system developed by Guglielmo Marconi at the end of that decade[40] (see invention of radio).

The atomic theory of matter had been proposed again in the early 19th century by the chemist John Dalton and became one of the hypotheses of the kinetic-molecular theory of gases developed by Clausius and James Clerk Maxwell to explain the laws of thermodynamics. The kinetic theory in turn led to the statistical mechanics of Ludwig Boltzmann (1844–1906) and Josiah Willard Gibbs (1839–1903), which held that energy (including heat) was a measure of the speed of particles. Interrelating the statistical likelihood of certain states of organization of these particles with the energy of those states, Clausius reinterpreted the dissipation of energy to be the statistical tendency of molecular configurations to pass toward increasingly likely, increasingly disorganized states (coining the term "entropy" to describe the disorganization of a state). The statistical versus absolute interpretations of the second law of thermodynamics set up a dispute that would last for several decades (producing arguments such as "Maxwell's demon"), and that would not be held to be definitively resolved until the behavior of atoms was firmly established in the early 20th century.[41][42] In 1902, James Jeans found the length scale required for gravitational perturbations to grow in a static nearly homogeneous medium.

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 22:00 , Processed in 0.127191 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部