搜索
热搜: music
门户 History History of science Theories/sociology view content

Sociology of the history of science

2014-3-22 13:55| view publisher: amanda| views: 1003| wiki(57883.com) 0 : 0

description: Science as a social enterprise has been developing exponentially for the past few centuries. In antiquity, the few people who were able to engage in natural inquiry were either wealthy themselves, had ...
Science as a social enterprise has been developing exponentially for the past few centuries. In antiquity, the few people who were able to engage in natural inquiry were either wealthy themselves, had rich benefactors, or had the support of a religious community. Today, scientific research has tremendous government support and also ongoing support from the private sector.

Available methods of communication have improved tremendously over time. Instead of waiting months or years for a hand-copied letter to arrive, today scientific communication can be practically instantaneous. Earlier, most natural philosophers worked in relative isolation, due to the difficulty and slowness of communication. Still, there was a considerable amount of cross-fertilization between distant groups and individuals.

Nowadays, almost all modern scientists participate in a scientific community, hypothetically global in nature (though often based around a relatively few number of nations and institutions of stature), but also strongly segregated into different fields of study. The scientific community is important because it represents a source of established knowledge which, if used properly, ought to be more reliable than personally acquired knowledge of any given individual. The community also provides a feedback mechanism, often in the form of practices such as peer review and reproducibility. Most items of scientific content (experimental results, theoretical proposals, or literature reviews) are reported in scientific journals and are hypothetically subjected to the scrutiny of their peers, though a number of scholarly critics from both inside and outside the scientific community have, in recent decades, began to question the effect of commercial and government investment in science on the peer review and publishing process, as well as the internal disciplinary limitations to the scientific publication process.

A major development of the Scientific Revolution was the foundation of scientific societies: Academia Secretorum Naturae (Accademia dei Segreti, the Academy of the Mysteries of Nature) can be considered the first scientific community; founded in Naples 1560 by Giambattista della Porta. The Academy had an exclusive membership rule: discovery of a new law of nature was a prerequisite for admission. It was soon shut down by Pope Paul V under suspicion of sorcery.

The Academia Secretorum Naturae was replaced by the Accademia dei Lincei, which was founded in Rome 1603. The Lincei included Galileo as a member, but failed upon his condemnation in 1633. The Accademia del Cimento, Florence 1657, lasted 10 years. The Royal Society of London, 1660 to the present day, brought together a diverse collection of scientists to discuss theories, conduct experiments, and review each other's work. The Académie des Sciences was created as an institution of the government of France 1666, meeting in the King's library. The Akademie der Wissenschaften began in Berlin 1700.

Early scientific societies provided valuable functions, including a community open to and interested in empirical inquiry, and also more familiar with and more educated about the subject. In 1758, with the aid of his pupils, Lagrange established a society, which was subsequently incorporated as the Turin Academy.

Much of what is considered the modern institution of science was formed during its professionalization in the 19th century. During this time the location of scientific research shifted primarily to universities, though also to some extent it also became a standard component of industry as well. In the early years of the 20th century, especially after the role of science in the first World War, governments of major industrial nations began to invest heavily in scientific research. This effort was dwarfed by the funding of scientific research undertaken by all sides in World War II, which produced such "wonder weapons" as radar, rocketry, and the atomic bomb. During the Cold War, a large amount of government resources were poured into science by the USA, USSR, and many European powers. It was during this time that DARPA funded nationwide computer networks, one of them eventually under the internet protocol. In the post-Cold War era, a decline in government funding from many countries has been met with an increase of industrial and private investment. The funding of science is a major factor in its historical and global development, as though science is hypothetically international in scope, in a practical sense it has usually centered around wherever it could find the most funding.

Major events in the history of scientific communication[edit]


Gutenberg-era printing presses allowed the rapid spread of new ideas across 15th and 16th century Europe.
The cave paintings depicted events, with no commentary. From 40,000 BC to 15,000 BC.
The Ishango Bone dated 25,000 years ago could only show tallies in mathematical notation.
The clay tablets of Mesopotamia show the scale of the commentary or the information: the argument and logic of a discovery would be limited to what fit on the tablet. From late 4th millennium onwards.
Poetry and rhyme allowed people to remember memorable events more easily. For example, the Chinese generation names are taken from a poem selected by each family.
The parchment and paper scrolls which arose in Greek and in Chinese culture could start to contain the history and development of ideas and discoveries. Parchment was invented in Pergamon in the 2nd century BC, while the maunfacture of paper was described for the first time in 105 AD in China. It was brought to Western world only in the 13th century.
The codex or book of medieval times allowed random access to specific passages. The systematic printing and production of books could then allow the systematic production of new ideas. From late 1st century onwards.
By the 20th century, the scale and scope of scientific work allowed collaboration of researchers and the definition of consistent protocols for this collaboration in scientific work.

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 22:00 , Processed in 0.494627 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部