搜索
热搜: music
门户 Health Hygiene Occupational hygiene view content

Workplace Assessment Methods

2014-3-14 23:47| view publisher: amanda| views: 1002| wiki(57883.com) 0 : 0

description: Although there are many aspects to occupational hygiene work the most known and sought after is in determining or estimating potential or actual exposures to hazards. For many chemicals and physical h ...
Although there are many aspects to occupational hygiene work the most known and sought after is in determining or estimating potential or actual exposures to hazards. For many chemicals and physical hazards, occupational exposure limits have been derived using toxicological, epidemiological and medical data allowing hygienists to reduce the risks of health effects by implementing the "Hierarchy of Hazard Controls". Several methods can be applied in assessing the workplace or environment for exposure to a known or suspected hazard. Occupational hygienists do not rely on the accuracy of the equipment or method used but in knowing with certainty and precision the limits of the equipment or method being used and the error or variance given by using that particular equipment or method. Well known methods for performing occupational exposure assessments can be found in "A Strategy for Assessing and Managing Occupational Exposures, Third Edition Edited by Joselito S. Ignacio and William H. Bullock". [5]

The main steps outlined for assessing and managing occupational exposures:

- Basic Characterization (identify agents, hazards, people potentially exposed and existing exposure controls)

- Exposure Assessment (select occupational exposure limits, hazard bands, relevant toxicological data to determine if exposures are "acceptable", "unacceptable" or "uncertain")

- Exposure Controls (for "unacceptable" or "uncertain" exposures) see "Hierarchy of Hazard Controls"

- Further Information Gathering (for "uncertain" exposures)

- Hazard Communication (for all exposures)

- Reassessment (as needed) / Management of Change



Hierarchy of occupational exposure limits (OELs)
Basic Characterization & Walk Through Surveys__
The first step in understanding health risks related to exposures requires the collection of "basic characterization" information from available sources. A traditional method applied by occupational hygienists to initially survey a workplace or environment is used to determine both the types and possible exposures from hazards (e.g. noise, chemicals, radiation). The walk-through survey can be targeted or limited to particular hazards such as silica dust, or noise, to focus attention on control of all hazards to workers. A full walk-through survey is frequently used to provide information on establishing a framework for future investigations, prioritizing hazards, determining the requirements for measurement and establishing some immediate control of potential exposures. The Health Hazard Evaluation Program from the National Institute for Occupational Safety and Health is an example of an industrial hygiene walk-through survey. Other sources of basic characterization information include worker interviews, observing exposure tasks, material safety data sheets, workforce scheduling, production data, equipment and maintenance schedules to identify potential exposure agents and people possibly exposed.

Sampling Survey Equipment__
An occupational hygienist may use one or a number of commercially available electronic measuring devices to measure noise, vibration, ionizing and non-ionizing radiation, dust, solvents, gases, et cetera. Each device is often specifically designed to measure a specific or particular type of contaminant. Such devices are often subject to multiple interferences. Electronic devices need to be calibrated before and after use to ensure the accuracy of the measurements taken and often require a system of certifying the precision of the instrument.



Measurements of noise levels using a sound level meter is a component of the occupational hygiene assessment.
Dust Sampling__
Nuisance dust is considered to be the total dust in air including inhalable and respirable fractions.

Various dust sampling methods exist that are internationally recognised. Inhalable dust is determined using the modern equivalent of the Institute of Occupational Medicine (IOM) MRE 113A monitor (see section on workplace exposure, measurement & modelling). Inhalable dust is considered to be dust of less than 100 micrometers aerodynamic equivalent diameter (AED) that enters through the nose and or mouth. See Lungs

Respirable dust is sampled using a cyclone dust sampler design to sample for a specific fraction of dust AED at a set flow rate. The respirable dust fraction is dust that enters the 'deep lung' and is considered to be less than 10 micrometers AED.

Nuisance, inhalable and respirable dust fractions are all sampled using a constant volumetric pump for a specific sampling period. By knowing the mass of the sample collected and the volume of air sampled a concentration for the fraction sampled can be given in milligrams (mg) per metre cubed (m3). From such samples the amount of inhalable or reespirable dust can be determined and compared to the relevant occupational exposure limits.

By use of inhalable, respirable or other suitable sampler (7 hole, 5 hole, et cetera) these dust sampling methods can also used to determine metal exposure in the air. This requires collection of the sample on a methyl-cellulose ester (MCE) filter and acid digestion of the collection media in the laboratory followed by measuring metal concentration though an atomic absorption (or emission) spectrophotometery. Both the UK Health and Safety Laboratory [6] and NIOSH Manual of Analytical Methods [7] have specific methodologies for a broad range of metals in air found in industrial processing (smelting, foundries, et cetera).

A further method exists for the determination of asbestos, fibreglass, synthetic mineral fibre and ceramic mineral fibre dust in air. This is the membrane filter method (MFM) and requires the collection of the dust on a grided filter for estimation of exposure by the counting of 'conforming' fibres in 100 fields through a microscope. Results are quantified on the basis of number of fibres per millilitre of air (f/ml). Many countries strictly regulate the methodology applied to the MFM.

Chemical Sampling__
Two types of chemically absorbent tubes are used to sample for a wide range of chemical substances. Traditionally a chemical absorbent 'tube' (a glass or stainless steel tube of between 2 and 10 mm internal diameter) filled with very fine absorbent silica (hydrophilic) or carbon, such as coconut charcoal (lypophylic), is used in a sampling line where air is drawn through the absorbent material for between four hours (minimum workplace sample) to 24 hours (environmental sample) period. The hydrophilic material readily absorbs water-soluble chemical and the lypophylic material absorbs non water-soluble materials. The absorbent material is then chemically or physically extracted and measurements performed using various gas chromatograph or mass spectrometry methods. These absorbent tube methods have the advantage of being usable for a wide range of potential contaminates. However, they are relatively expensive methods, are time consuming and require significant expertise in sampling and chemical analysis. A frequent complaint of workers is in having to wear the sampling pump (up to 1 kg) for several days of work to provide adequate data for the required statistical certainty determination of the exposure.

In the last few decades, advances have been made in 'passive' badge technology. These samplers can now be purchased to measure one chemical (e.g. formaldehyde) or a chemical type (e.g. ketones) or a broad spectrum of chemicals (e.g. solvents). They are relatively easy to set up and use. However, considerable cost can still be incurred in analysis of the 'badge'. They weigh 20 to 30 grams and workers do not complain about their presence. Unfortunately 'badges' may not exist for all types of workplace sampling that may be required and the charcoal or silica method may sometimes have to be applied.

From the sampling method, results are expressed in milligrams per cubic meter (mg/m3) or parts per million (PPM) and compared to the relevant occupational exposure limits.

It is a critical part of the exposure determination that the method of sampling for the specific contaminate exposure is directly linked to the exposure standard used. Many countries regulate both the exposure standard, the method used to determine the exposure and the methods to be used for chemical or other analysis of the samples collected.



Simple representation of exposure risk assessment and management hierarchy based on available information
Exposure Management and Controls__
The hierarchy of control defines the approach used to reduce exposure risks protecting workers and communities. These methods include elimination, substitution, engineering controls (isolation or ventilation), administrative controls and personal protective equipment. Occupational hygienists, engineers, maintenance, management and employees should all be consulted for selecting and designing the most effective and efficient controls based on the hierarchy of control.

About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|

GMT+8, 2015-9-11 22:05 , Processed in 0.133072 second(s), 16 queries .

57883.com service for you! X3.1

返回顶部