Urban and Regional Studies deal with large tables of spatial data obtained from censuses and surveys. It is necessary to simplify the huge amount of detailed information in order to extract the main trends. Multivariate analysis (or Factor analysis, FA) allows a change of variables, transforming the many variables of the census, usually correlated between themselves, into fewer independent "Factors" or "Principal Components" which are, actually, the eigenvectors of the data correlation matrix weighted by the inverse of their eigenvalues. This change of variables has two main advantages : Since information is concentrated on the first new factors, it is possible to keep only a few of them while losing only a small amount of information; mapping them produces fewer and more significant maps The factors, actually the eigenvectors, are orthogonal by construction, i.e. not correlated. In most cases, the dominant factor (with the largest eigenvalue) is the Social Component, separating rich and poor in the city. Since factors are not-correlated, other smaller processes than social status, which would have remained hidden otherwise, appear on the second, third, … factors. Factor analysis depends on measuring distances between observations : the choice of a significant metric is crucial. The Euclidean metric (Principal Component Analysis), the Chi-Square distance (Correspondence Analysis) or the Generalized Mahalanobis distance (Discriminant Analysis ) are among the more widely used.[5] More complicated models, using communalities or rotations have been proposed.[6] Using multivariate methods in spatial analysis began really in the 1950s (although some examples go back to the beginning of the century) and culminated in the 1970s, with the increasing power and accessibility of computers. Already in 1948, in a seminal publication, two sociologists, Bell and Shevky,[7] had shown that most city populations in the USA and in the world could be represented with three independent factors : 1- the « socio-economic status » opposing rich and poor districts and distributed in sectors running along highways from the city center, 2- the « life cycle », i.e. the age structure of households, distributed in concentric circles, and 3- « race and ethnicity », identifying patches of migrants located within the city. In 1961, in a groundbreaking study, British geographers used FA to classify British towns.[8] Brian J Berry, at the University of Chicago, and his students made a wide use of the method,[9] applying it to most important cities in the world and exhibiting common social structures.[10] The use of Factor Analysis in Geography, made so easy by modern computers, has been very wide but not always very wise.[11] Since the vectors extracted are determined by the data matrix, it is not possible to compare factors obtained from different censuses. A solution consists in fusing together several census matrices in a unique table which, then, may be analyzed. This, however, assumes that the definition of the variables has not changed over time and produces very large tables, difficult to manage. A better solution, proposed by psychometricians,[12] groups the data in a « cubic matrix », with three entries (for instance, locations, variables, time periods). A Three-Way Factor Analysis produces then three groups of factors related by a small cubic « core matrix ».[13] This method, which exhibits data evolution over time, has not been widely used in geography.[14] In Los Angeles,[15] however, it has exhibited the role, traditionally ignored, of Downtown as an organizing center for the whole city during several decades. |
About us|Jobs|Help|Disclaimer|Advertising services|Contact us|Sign in|Website map|Search|
GMT+8, 2015-9-11 22:16 , Processed in 0.149221 second(s), 16 queries .